
 

TOWARD A MODERN DATA ARCHITECTURE 
FOR EMBEDDED ANALYTICS

Data has gone from a mere byproduct of applications and processes 
to being crowned the king of the modern world. The Economist went 
so far as to declare data, not oil, as the world’s most valuable resource1. 
The data landscape is also more complex than oil’s—with abundant 
sources, volume, velocity, and variety. 

Given data’s high demand and complex landscape, data architecture has become increasingly important 

for organizations that are embarking on any data-driven project—including embedded analytics. Before 

you embed new analytics, dashboards, or reporting capabilities in your software, you need to carefully 

design a data architecture with analytics in mind. Why? Because a poorly conceived data strategy can 

negatively impact the response time and performance of your entire application. 

Unfortunately, roadmaps are urgent and priorities are scattered. It’s tempting to overlook or postpone the 

data architecture steps of your embedded analytics project. Some embedded analytics vendors may even 

mislead you, saying you don’t need to worry about data architecture because their platforms integrate well 

across all environments. And the fact is, your application development team may not fully understand how 

embedded analytics will impact the production environment and performance. 

Inevitably, any modern data project will reach a point where performance and data complexity force you 

to re-evaluate the data architecture. 

This white paper discusses data analytics architecture in four parts: 

Part 1:  Factors to consider when planning your embedded data analytics architecture.............2

Part 2:  Seven common approaches to data architecture, including recommendations 

and the top challenges when optimizing your environment..............................................................4

Part 3: Guidelines to help you choose the best data architecture approach for your 

organization’s setup and needs.................................................................................................................10

Part 4: Expert recommendations from Gartner and the Eckerson Group on modernizing 

your analytics architecture.........................................................................................................................11

1       The Economist: "The world’s most valuable resource is no longer oil, but data," May 2017
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TOWARD A MODERN DATA ARCHITECTURE 
FOR EMBEDDED ANALYTICS

The road to an ideal data architecture is long and rarely straight. Don’t expect to revamp your entire data 

architecture instantaneously. Your data journey will depend on your business priorities, your timeline, and 

the needs of your customers.  

Ask yourself the following questions to help inform your architecture plan:

What are your data analytics goals? Your data architecture will hinge on your goals. 

Are you generating reports to describe “what happened” (descriptive analytics), or giving 

people insight into what will happen based on the past (predictive analytics)? Or are you 

automating decisions based on patterns in data (prescriptive analytics)? Moving from 

descriptive to prescriptive analytics requires a progressively complex data architecture. 

Who is your end user? Your data analytics goals will be tied closely to your end custom-

er. Are your users simply trying to find information within the context of your application 

(for example, report writers gathering information from a portal)? Is your end user a data 

analyst who needs to understand performance and data structure? Is he a data scientist 

who wants to bring in datasets from di�erent sources and manipulate them within your 

application? If you have multiple end users with di�erent personas, you may need a data 

architecture strategy that accommodates scaling and progressive complexity. 

What types of content will be delivered and how? Understanding what type of content 

will be delivered in your embedded analytics tool and how it will be delivered is an 

important part of your strategy. For example, a tool that runs and emails reports has 

di�erent performance characteristics and requirements than an interactive dashboard 

for an executive or a self-service user.

What data structures do you have in place? How your data is structured (e.g., array, file, 

record, table, tree) will determine how that data is stored and organized, and more 

importantly, how it can be accessed. 

Part 1: Considerations when planning your embedded data 
analytics architecture

 

 

What are your data latency expectations? Data freshness is a metric that measures how 

quickly data updates are collected, processed, and made available in analytics reports. 

Do your end users demand access to real-time and near-time operational data? A 

well-designed data architecture can help you reduce data latency. Also consider how 

frequent your data updates are. 

Where are you in your project timeline? Are you just starting out in your embedded 

analytics journey, or are you looking to optimize what you have in place? Are you look-

ing for quick wins with plans to improve your analytics o�ering based on customer 

feedback, or do you have a longer timeline to integrate an analytics workflow in your 

application with more robust features? 

How do you plan to scale your current application infrastructure and platform? 

Are you planning to scale up with new upgrades or scale out by linking to other 

resources? Growing data volumes will a�ect your performance, so data size matters. 

It is therefore important to design your data architecture with scalability in mind.

What skills, tools, and budget does your team have? Does your project team have the 

skillset to manage data issues? What tools are used to manage your data architecture? 

How do you monitor the di�erent layers to detect performance issues? If you don’t have 

the skillset or tools, does your budget allow you to consult with embedded analytics 

vendors who can conduct performance reviews and provide advice and troubleshooting? 

How will you iterate over time? Most embedded analytics projects are iterative, and will 

change as your users demand new capabilities and new technologies emerge. Your data 

architecture will evolve with the di�erent iterations of your embedded dashboards 

and reports. 
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The road to an ideal data architecture is long and rarely straight. Don’t expect to revamp your entire data 

architecture instantaneously. Your data journey will depend on your business priorities, your timeline, and 

the needs of your customers.  
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Are you generating reports to describe “what happened” (descriptive analytics), or giving 

people insight into what will happen based on the past (predictive analytics)? Or are you 

automating decisions based on patterns in data (prescriptive analytics)? Moving from 

descriptive to prescriptive analytics requires a progressively complex data architecture. 

Who is your end user? Your data analytics goals will be tied closely to your end custom-
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(for example, report writers gathering information from a portal)? Is your end user a data 

analyst who needs to understand performance and data structure? Is he a data scientist 

who wants to bring in datasets from di�erent sources and manipulate them within your 

application? If you have multiple end users with di�erent personas, you may need a data 

architecture strategy that accommodates scaling and progressive complexity. 
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will be delivered in your embedded analytics tool and how it will be delivered is an 

important part of your strategy. For example, a tool that runs and emails reports has 

di�erent performance characteristics and requirements than an interactive dashboard 

for an executive or a self-service user.

What data structures do you have in place? How your data is structured (e.g., array, file, 

record, table, tree) will determine how that data is stored and organized, and more 

importantly, how it can be accessed. 

What are your data latency expectations? Data freshness is a metric that measures how 

quickly data updates are collected, processed, and made available in analytics reports. 

Do your end users demand access to real-time and near-time operational data? A 

well-designed data architecture can help you reduce data latency. Also consider how 

frequent your data updates are. 

Where are you in your project timeline? Are you just starting out in your embedded 

analytics journey, or are you looking to optimize what you have in place? Are you look-

ing for quick wins with plans to improve your analytics o�ering based on customer 

feedback, or do you have a longer timeline to integrate an analytics workflow in your 

application with more robust features? 

How do you plan to scale your current application infrastructure and platform? 

Are you planning to scale up with new upgrades or scale out by linking to other 

resources? Growing data volumes will a�ect your performance, so data size matters. 

It is therefore important to design your data architecture with scalability in mind.

What skills, tools, and budget does your team have? Does your project team have the 

skillset to manage data issues? What tools are used to manage your data architecture? 

How do you monitor the di�erent layers to detect performance issues? If you don’t have 

the skillset or tools, does your budget allow you to consult with embedded analytics 

vendors who can conduct performance reviews and provide advice and troubleshooting? 

How will you iterate over time? Most embedded analytics projects are iterative, and will 

change as your users demand new capabilities and new technologies emerge. Your data 

architecture will evolve with the di�erent iterations of your embedded dashboards 

and reports. 
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Is analytics a strategic goal in your organization? 

If you host your environment and realize analytics is a strategic goal, then it’s worth investing in a 

Data Warehouse/Data Mart. To design a Data Warehouse/Data Mart e�ectively, the first step is to 

make sure you understand the types of queries and use cases for your end user. This allows you to 

build and implement the environment correctly and optimize it for the types of queries and use cases 

it will handle. 

How large is your Data Warehouse/Data Mart? 

If your starting point is a Data Warehouse/Data Mart, moving to a Modern Analytics Database will depend on 
how large your current environment is and how critical performance is to your organization.

Also, if you are hosting your own Data Warehouse/Data Mart, you can save money in the long term with less 
hardware overall. 

Ultimately, your current technology and environment, skills, and performance needs will be critical drivers 

in your data architecture decision.

Now that we have examined how your analytics data architecture may evolve in practice, let’s take a look 

at what industry analysts recommend for an ideal modern data architecture.

Industry analysts have more to say about choosing a data architecture approach. In the Eckerson Group 

report, A Pragmatic Approach to Modern Data Architecture, David Wells explains the first step to modern-

izing your data architecture is to change your perspective on data. He writes, “Think of data not as some-

thing that is static and stored, but as something live, dynamic, and flowing through every business process.” 

What does this mean for the analytics architecture? It’s a shift away from traditional BI architecture—which 

is based on a linear data flow, structured data, rigid infrastructure, batch processing, and centralized 

services—and toward a modern approach based on multi-directional data flow, iterative workflow, both 

structured and unstructured data, elastic infrastructure, and decentralized/self-service services.

Gartner’s Planning Guide for Data and Analytics goes into more detail on conceiving an end-to-end 

analytics architecture that fuses data, insight, and action. In this architecture, there are four phases: data 

acquisition, organization, analysis, and delivery. The table on the next page summarizes the main guide-

lines related to each of these phases. 

Aggregate Tables or Material Views

Application development teams may opt to create aggregate tables or material views as another work-

around to using view or stored procedures. With an aggregate table, you can create a summary table of 

the data you need by running a “Group By” SQL query. For example, a marketing department can create 

an aggregate table that shows “Sales over a month.” Since most analytics queries typically involve aggre-

gation, using an aggregate table will prevent the need to aggregate the data for every query. In a material-

ized view, you can store query results in a table or database.  

The pros of using aggregate tables or material views include: 

Simplifies the SQL needed to run analytics 

Aggregating data improves query performance 

No need to aggregate data for every query

The downside of aggregate tables or material views is:

You need to figure out when and how to update the tables:

Triggers can help with synchronization of data, but typically add to load on transactional 

additions/updates and can be complex to implement. 

Update processes, which run on a periodic basis, may be another alternative—but you will need to 

implement logic that can distinguish between updates versus new transactions.

Another issue arises if you have new requirements where the necessary data is not in the aggregate 

tables or material views. You may have to go back to the transactional database to recreate your 

aggregate tables and start over.

Bottom Line: Pre-aggregated tables and materialized views will help with performance. However, you do 

need to stay organized and put strict processes in place to keep the aggregates up to date. 

Replication of Transactional Database

Replication is another common workaround that o�oads analytics queries from the production database 

to a replicated copy of the database. Replication requires copying and storing data in more than one site 

or node, so all of the analytics users share the same information. 

TOWARD A MODERN DATA ARCHITECTURE 
FOR EMBEDDED ANALYTICS

Depending on your organization’s particular setup and needs, you could take a number of di�erent 

approaches to data architecture for embedded analytics. Here, we outline the seven most common 

approaches—from a transactional database to a modern analytics database (columnar or in memory). 

Note that these are not individual steps in your data architecture journey. You may skip some approaches 

altogether, or use two simultaneously. This is not a prescribed path. 

Read on to explore each step, the pros and cons, and the impact on analytic workloads, as well 

as our recommendations. 

Transactional Database 

The starting point for many application development teams is the ubiquitous transactional database, 

which runs most production systems. Although they aren’t specifically built for analytics, transactional 

databases typically become the default analytics environment because they are already in place, and are 

familiar and accessible. 

Transactional databases are row stores, with each record/row keeping relevant information together. 

For example, for a travel website, each record/row may store relevant customer information, flight number, 

date of booking, and so on, and may be uniquely identified by Customer_ID. The database may contain 

several tables tracking other information related to the transaction, such as flight schedule, ticket prices, 

and country list. Transactional databases are known for very fast read/write updates and high data integrity. 

The pros of transactional databases include:

Most application development teams are familiar with this database structure and understand how to 

write queries to get the correct data.

As soon as data hits the transactional database, it is available for analytics.

Part 2: Seven Common Approaches to Data Architecture for Embedded 
Analytics and Recommendations

 

The main downside of transactional databases is structure: They’re not designed for optimal analytics 

queries. This creates the following issues: 

You have to resort to complex joins and operations to gain insight into the data stored in a 

transactional database. In our travel website example, if you want to correlate the most popular flight 

bookings with country and time of year for a marketing campaign, you would have to come up with 

unwieldy joins across several tables.

Typically, performance of analytic queries will a�ect the performance of the transactional database

—and that may create lags in response time with both the analytics query and transactional system.

Bottom Line: Using transactional databases for embedded analytics makes sense if you already have them 

in place, but you will eventually run into limitations and need workarounds.

View or Stored Procedures

Typically, when developers start noticing problems with their transactional systems, they may opt to 

create some views or stored procedures. Views create the appearance of a table as a result set of a stored 

query. The view could be generated from a combination of rows and columns across multiple tables. 

While views only showcase the data, stored procedures allow you to execute SQL statements on the data. 

The pros of using views and stored procedures include:

Simplifies the SQL needed to run analytics

Allows users to filter the information they want to see

With stored procedures, users can make modifications to the underlying tables (with views, you can 

filter and sort only).

Provides a good abstraction layer if schemas are similar in di�erent underlying tables/columns

Views or stored procedures may be the next logical step from transactional databases, but they 

typically make performance worse. The cons include:

Complex views with lots of tables create additional joins. 

Stored procedures may result in filtering and post processing after the data is retrieved, which may 

significantly reduce your response time. 

Bottom Line: When it comes to embedded analytics, views or stored procedures risk creating lags and 

a�ecting your application’s response time. 

The pros of replication include:

Many databases have built-in replication facilities, so this is easier to implement. You can leverage 

transaction logging to publish changes to replicated databases, then re-apply the transactions. 

Removes analytical load from the production database.

Allows for di�erent indexing strategy that may create better indexes for analytics to be introduced. 

Aggregate tables can now be created on the replicated database rather than the production database. 

Allows your team to use a familiar database technology.

The main issue with replication is the lag between a new transaction hitting the database and that data 

being available in the replicated table. Other downsides include: 

The table structures are typically the same and subject to complex queries, creating aggregate tables, etc. 

If database replication is di�cult with provided tools, a replication technology may need to be 

introduced, implemented, and maintained.

Real-time queries may still need to hit the production database (dependent upon “lag” or data latency 

expectations). 

Bottom Line: Replicating the production database also means replicating the complexity of queries in 

your embedded analytics solution. 

Caching

Sometimes, application development teams may turn to caching to help with query performance. With 

caching, you can preprocess complex and slow-running queries so the resulting data is easier to access when 

the user requests the information. The cached location could be in memory, another table in the database, or 

a file-based system where the resulting data is stored temporarily to make it easier to access frequently. 

The pros of caching include:

Caching can help with performance where queries are repeated.

Caching can also enable better performance with federated data (data in multiple-source systems), 

particularly when data needs to be joined or filtered based on other queries. 

It’s relatively easy to set up, in most environments. 

With caching, you query the database once and re-use the data many times.

Caching works well in a stable environment, where data in the database does not change frequently. 

You will need to identify data to be cached and develop processes to refresh the cache on a periodic 

basis. Some downsides include:

If the cache isn’t reused, it can add to performance overhead.  

There are data latency issues involved with using caches, and in some cases (like real-time queries), 

caching may not be the best option. 

Where there are multiple sources, ensuring consistency and scheduling of cache refreshes can 

be complex.

Bottom Line: Caching can be a quick fix for improving embedded analytics performance, but the com-

plexity of multiple sources and data latency issues may lead to limitations over time. 

Data Mart/Data Warehouse

For a more sophisticated data architecture, application development teams may turn to data warehouses 

or data marts. Data warehouses are central repositories of integrated data from one or more disparate 

sources. Data marts contain a subset of a data warehouse designed for a specific reason (e.g., isolating 

data related to a particular line of business within the company).  

Data warehouses and data marts allow you to organize your data in a way that simplifies query complexi-

ty. Star and snowflake schemas are the common schema models associated with data warehouses and 

are logically structured to make analytics faster and easier to access. 

Other benefits of using a data warehouse or data mart include: 

Query performance is significantly improved. Since all the required data is in the data warehouse, this 

removes the need for querying multiple sources. 

You reduce the load on the transactional database. You can build a data warehouse and data mart 

using your existing database technology.

The main downside is that designing a data structure for particular use cases can be complex at first. If 

you are not familiar with star or snowflake schema and the ETL tools involved, then you may need 

support through this stage. Other downsides include: 

ETL involves having the skill set to understand and use data transformation tools. 

A need to understand how to lower data latency in scheduling updates to a data warehouse.

Additional quality control steps are needed to ensure the data in the data warehouse is valid; the new 

queries are running correctly; and each step in the ETL/ELT process is validated.  

It takes time to build, test, and manage.

You may still need to occasionally query the transaction system for real-time requirements. 

Bottom Line: Data warehouses and data marts are designed for faster analytics and response times, but 

implementation will take more time and be more complex. 

Modern Analytics Database

Even with a data warehouse in place, application development teams find that switching to a modern 

analytics database may be the best option for analytics queries. 

Modern analytics databases are typically columnar structures or in-memory structures. In columnar 

structures, data is stored at a granular column level in the form of many files. This structure makes it faster 

to query since only the columns associated with the query need to be read, not the entire row.  This 

significantly increases performance. For in-memory structures, the data is loaded into the memory, which 

makes reading/writing dramatically faster than a disk-based structure. 

Pros of a modern analytics database include:

Improved performance on data load. ELT is faster, since data transformations occur on the analytics 

database platform. 

Optimal query performance since the database enables easier management of “flat tables” associated 

with star schemas. 

Databases that are designed for fast queries and optimized data storage, which is important for large 

volumes of data. 

There is a learning curve associated with switching to a modern analytics database. You will need to 

learn to operate and support a new database technology. You will also need to learn how to optimize 

the database performance with new concepts such as projections rather than indexes. Other 

downsides include:

Unlike transactional databases, analytics databases perform updates and deletions poorly. 

You may need to implement workarounds for this, such as partition design to improve where data 

needs updating, or new data transformation strategies to avoid update/deletion issues. 

You also need to determine the update frequency for data. 

Bottom Line: The modern analytics database is optimal for faster queries and dealing with large volumes 

of data, but it requires specialized skills and can be costly to implement. 

Some data architecture approaches will be better suited to your organization than others, and you may 

skip some approaches altogether. It all depends on your particular setup and needs. So how do you find 

the approach that’s best for you? 

Consider these common data scenarios and recommended architecture approaches: 

Where is your solution located? On premise or SaaS? 

If your solution is on your customer’s premises, then creating Views, Stored procedures and/or 

Aggregate tables will be the easiest first step to implement.  

If you are hosting the solution for your customers, and performance of your transactional database is 

critical, then Replication is a good first step. Replication will remove the analytics load from the 

transactional database. You may add Aggregate tables as a next step and eventually consider moving 

into a Data Warehouse/Data Mart. 

How large and complex is your environment? 

When customers use your solution, does it mean large data volumes where performance is critical? 

Then investing in Replication and/or a Data Warehouse will justify the additional hardware and 

costs of implementation, since they will quickly run into the limitations of working with Views and 

Stored Procedures. 

Choosing the right approach to data architecture will depend on your organization’s particular needs. 

While it may seem overwhelming to modernize your data analytics architecture—especially if developing 

embedded analytics is not a core competency of your engineering and product teams—it can be done. 

Gartner’s 2019 Planning Guide for Data and Analytics advises application development teams to start 

small and build in stages, beginning with a business challenge that can be solved. You may also consider 

partnering with a third-party embedded analytics platform that is already built on modern data architec-

ture principles. This will allow you to scale your embedded analytics as your application continues to grow 

and evolve. 

Learn more about how embedded analytics fits in your tech stack. 
Read the ebook: Are Your Embedded Analytics DevOps-Friendly? 
 

About Logi Analytics

Delivering compelling applications with analytics at their core has never been more crucial—or more 

complex. Logi is the only developer-grade analytics platform focused exclusively on embedding 

analytics in commercial and enterprise applications. Logi leverages your existing tech stack and sup-

ports unlimited customization and white-labeling, so you can quickly build a completely unique 

analytics experience.

Over 1,900 applications have trusted the Logi platform to deliver sophisticated analytics capabilities 

and power their businesses. The company is headquartered in McLean, Virginia, with o�ces in Ireland 

and England. Learn more at LogiAnalytics.com.
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Is analytics a strategic goal in your organization? 

If you host your environment and realize analytics is a strategic goal, then it’s worth investing in a 

Data Warehouse/Data Mart. To design a Data Warehouse/Data Mart e�ectively, the first step is to 

make sure you understand the types of queries and use cases for your end user. This allows you to 

build and implement the environment correctly and optimize it for the types of queries and use cases 

it will handle. 

How large is your Data Warehouse/Data Mart? 

If your starting point is a Data Warehouse/Data Mart, moving to a Modern Analytics Database will depend on 
how large your current environment is and how critical performance is to your organization.

Also, if you are hosting your own Data Warehouse/Data Mart, you can save money in the long term with less 
hardware overall. 

Ultimately, your current technology and environment, skills, and performance needs will be critical drivers 

in your data architecture decision.

Now that we have examined how your analytics data architecture may evolve in practice, let’s take a look 

at what industry analysts recommend for an ideal modern data architecture.

Industry analysts have more to say about choosing a data architecture approach. In the Eckerson Group 

report, A Pragmatic Approach to Modern Data Architecture, David Wells explains the first step to modern-

izing your data architecture is to change your perspective on data. He writes, “Think of data not as some-

thing that is static and stored, but as something live, dynamic, and flowing through every business process.” 

What does this mean for the analytics architecture? It’s a shift away from traditional BI architecture—which 

is based on a linear data flow, structured data, rigid infrastructure, batch processing, and centralized 

services—and toward a modern approach based on multi-directional data flow, iterative workflow, both 

structured and unstructured data, elastic infrastructure, and decentralized/self-service services.

Gartner’s Planning Guide for Data and Analytics goes into more detail on conceiving an end-to-end 

analytics architecture that fuses data, insight, and action. In this architecture, there are four phases: data 

acquisition, organization, analysis, and delivery. The table on the next page summarizes the main guide-

lines related to each of these phases. 

Aggregate Tables or Material Views

Application development teams may opt to create aggregate tables or material views as another work-

around to using view or stored procedures. With an aggregate table, you can create a summary table of 

the data you need by running a “Group By” SQL query. For example, a marketing department can create 

an aggregate table that shows “Sales over a month.” Since most analytics queries typically involve aggre-

gation, using an aggregate table will prevent the need to aggregate the data for every query. In a material-

ized view, you can store query results in a table or database.  

The pros of using aggregate tables or material views include: 

Simplifies the SQL needed to run analytics 

Aggregating data improves query performance 

No need to aggregate data for every query

The downside of aggregate tables or material views is:

You need to figure out when and how to update the tables:

Triggers can help with synchronization of data, but typically add to load on transactional 

additions/updates and can be complex to implement. 

Update processes, which run on a periodic basis, may be another alternative—but you will need to 

implement logic that can distinguish between updates versus new transactions.

Another issue arises if you have new requirements where the necessary data is not in the aggregate 

tables or material views. You may have to go back to the transactional database to recreate your 

aggregate tables and start over.

Bottom Line: Pre-aggregated tables and materialized views will help with performance. However, you do 

need to stay organized and put strict processes in place to keep the aggregates up to date. 

Replication of Transactional Database

Replication is another common workaround that o�oads analytics queries from the production database 

to a replicated copy of the database. Replication requires copying and storing data in more than one site 

or node, so all of the analytics users share the same information. 

TOWARD A MODERN DATA ARCHITECTURE 
FOR EMBEDDED ANALYTICS

Depending on your organization’s particular setup and needs, you could take a number of di�erent 

approaches to data architecture for embedded analytics. Here, we outline the seven most common 

approaches—from a transactional database to a modern analytics database (columnar or in memory). 

Note that these are not individual steps in your data architecture journey. You may skip some approaches 

altogether, or use two simultaneously. This is not a prescribed path. 

Read on to explore each step, the pros and cons, and the impact on analytic workloads, as well 

as our recommendations. 

Transactional Database 

The starting point for many application development teams is the ubiquitous transactional database, 

which runs most production systems. Although they aren’t specifically built for analytics, transactional 

databases typically become the default analytics environment because they are already in place, and are 

familiar and accessible. 

Transactional databases are row stores, with each record/row keeping relevant information together. 

For example, for a travel website, each record/row may store relevant customer information, flight number, 

date of booking, and so on, and may be uniquely identified by Customer_ID. The database may contain 

several tables tracking other information related to the transaction, such as flight schedule, ticket prices, 

and country list. Transactional databases are known for very fast read/write updates and high data integrity. 

The pros of transactional databases include:

Most application development teams are familiar with this database structure and understand how to 

write queries to get the correct data.

As soon as data hits the transactional database, it is available for analytics.

The main downside of transactional databases is structure: They’re not designed for optimal analytics 

queries. This creates the following issues: 

You have to resort to complex joins and operations to gain insight into the data stored in a 

transactional database. In our travel website example, if you want to correlate the most popular flight 

bookings with country and time of year for a marketing campaign, you would have to come up with 

unwieldy joins across several tables.

Typically, performance of analytic queries will a�ect the performance of the transactional database

—and that may create lags in response time with both the analytics query and transactional system.

Bottom Line: Using transactional databases for embedded analytics makes sense if you already have them 

in place, but you will eventually run into limitations and need workarounds.

View or Stored Procedures

Typically, when developers start noticing problems with their transactional systems, they may opt to 

create some views or stored procedures. Views create the appearance of a table as a result set of a stored 

query. The view could be generated from a combination of rows and columns across multiple tables. 

While views only showcase the data, stored procedures allow you to execute SQL statements on the data. 

The pros of using views and stored procedures include:

Simplifies the SQL needed to run analytics

Allows users to filter the information they want to see

With stored procedures, users can make modifications to the underlying tables (with views, you can 

filter and sort only).

Provides a good abstraction layer if schemas are similar in di�erent underlying tables/columns

Views or stored procedures may be the next logical step from transactional databases, but they 

typically make performance worse. The cons include:

Complex views with lots of tables create additional joins. 

Stored procedures may result in filtering and post processing after the data is retrieved, which may 

significantly reduce your response time. 

Bottom Line: When it comes to embedded analytics, views or stored procedures risk creating lags and 

a�ecting your application’s response time. 

The pros of replication include:

Many databases have built-in replication facilities, so this is easier to implement. You can leverage 

transaction logging to publish changes to replicated databases, then re-apply the transactions. 

Removes analytical load from the production database.

Allows for di�erent indexing strategy that may create better indexes for analytics to be introduced. 

Aggregate tables can now be created on the replicated database rather than the production database. 

Allows your team to use a familiar database technology.

The main issue with replication is the lag between a new transaction hitting the database and that data 

being available in the replicated table. Other downsides include: 

The table structures are typically the same and subject to complex queries, creating aggregate tables, etc. 

If database replication is di�cult with provided tools, a replication technology may need to be 

introduced, implemented, and maintained.

Real-time queries may still need to hit the production database (dependent upon “lag” or data latency 

expectations). 

Bottom Line: Replicating the production database also means replicating the complexity of queries in 

your embedded analytics solution. 

Caching

Sometimes, application development teams may turn to caching to help with query performance. With 

caching, you can preprocess complex and slow-running queries so the resulting data is easier to access when 

the user requests the information. The cached location could be in memory, another table in the database, or 

a file-based system where the resulting data is stored temporarily to make it easier to access frequently. 

The pros of caching include:

Caching can help with performance where queries are repeated.

Caching can also enable better performance with federated data (data in multiple-source systems), 

particularly when data needs to be joined or filtered based on other queries. 

It’s relatively easy to set up, in most environments. 

With caching, you query the database once and re-use the data many times.

Caching works well in a stable environment, where data in the database does not change frequently. 

You will need to identify data to be cached and develop processes to refresh the cache on a periodic 

basis. Some downsides include:

If the cache isn’t reused, it can add to performance overhead.  

There are data latency issues involved with using caches, and in some cases (like real-time queries), 

caching may not be the best option. 

Where there are multiple sources, ensuring consistency and scheduling of cache refreshes can 

be complex.

Bottom Line: Caching can be a quick fix for improving embedded analytics performance, but the com-

plexity of multiple sources and data latency issues may lead to limitations over time. 

Data Mart/Data Warehouse

For a more sophisticated data architecture, application development teams may turn to data warehouses 

or data marts. Data warehouses are central repositories of integrated data from one or more disparate 

sources. Data marts contain a subset of a data warehouse designed for a specific reason (e.g., isolating 

data related to a particular line of business within the company).  

Data warehouses and data marts allow you to organize your data in a way that simplifies query complexi-

ty. Star and snowflake schemas are the common schema models associated with data warehouses and 

are logically structured to make analytics faster and easier to access. 

Other benefits of using a data warehouse or data mart include: 

Query performance is significantly improved. Since all the required data is in the data warehouse, this 

removes the need for querying multiple sources. 

You reduce the load on the transactional database. You can build a data warehouse and data mart 

using your existing database technology.

The main downside is that designing a data structure for particular use cases can be complex at first. If 

you are not familiar with star or snowflake schema and the ETL tools involved, then you may need 

support through this stage. Other downsides include: 

ETL involves having the skill set to understand and use data transformation tools. 

A need to understand how to lower data latency in scheduling updates to a data warehouse.

Additional quality control steps are needed to ensure the data in the data warehouse is valid; the new 

queries are running correctly; and each step in the ETL/ELT process is validated.  

It takes time to build, test, and manage.

You may still need to occasionally query the transaction system for real-time requirements. 

Bottom Line: Data warehouses and data marts are designed for faster analytics and response times, but 

implementation will take more time and be more complex. 

Modern Analytics Database

Even with a data warehouse in place, application development teams find that switching to a modern 

analytics database may be the best option for analytics queries. 

Modern analytics databases are typically columnar structures or in-memory structures. In columnar 

structures, data is stored at a granular column level in the form of many files. This structure makes it faster 

to query since only the columns associated with the query need to be read, not the entire row.  This 

significantly increases performance. For in-memory structures, the data is loaded into the memory, which 

makes reading/writing dramatically faster than a disk-based structure. 

Pros of a modern analytics database include:

Improved performance on data load. ELT is faster, since data transformations occur on the analytics 

database platform. 

Optimal query performance since the database enables easier management of “flat tables” associated 

with star schemas. 

Databases that are designed for fast queries and optimized data storage, which is important for large 

volumes of data. 

There is a learning curve associated with switching to a modern analytics database. You will need to 

learn to operate and support a new database technology. You will also need to learn how to optimize 

the database performance with new concepts such as projections rather than indexes. Other 

downsides include:

Unlike transactional databases, analytics databases perform updates and deletions poorly. 

You may need to implement workarounds for this, such as partition design to improve where data 

needs updating, or new data transformation strategies to avoid update/deletion issues. 

You also need to determine the update frequency for data. 

Bottom Line: The modern analytics database is optimal for faster queries and dealing with large volumes 

of data, but it requires specialized skills and can be costly to implement. 

Some data architecture approaches will be better suited to your organization than others, and you may 

skip some approaches altogether. It all depends on your particular setup and needs. So how do you find 

the approach that’s best for you? 

Consider these common data scenarios and recommended architecture approaches: 

Where is your solution located? On premise or SaaS? 

If your solution is on your customer’s premises, then creating Views, Stored procedures and/or 

Aggregate tables will be the easiest first step to implement.  

If you are hosting the solution for your customers, and performance of your transactional database is 

critical, then Replication is a good first step. Replication will remove the analytics load from the 

transactional database. You may add Aggregate tables as a next step and eventually consider moving 

into a Data Warehouse/Data Mart. 

How large and complex is your environment? 

When customers use your solution, does it mean large data volumes where performance is critical? 

Then investing in Replication and/or a Data Warehouse will justify the additional hardware and 

costs of implementation, since they will quickly run into the limitations of working with Views and 

Stored Procedures. 

Choosing the right approach to data architecture will depend on your organization’s particular needs. 

While it may seem overwhelming to modernize your data analytics architecture—especially if developing 

embedded analytics is not a core competency of your engineering and product teams—it can be done. 

Gartner’s 2019 Planning Guide for Data and Analytics advises application development teams to start 

small and build in stages, beginning with a business challenge that can be solved. You may also consider 

partnering with a third-party embedded analytics platform that is already built on modern data architec-

ture principles. This will allow you to scale your embedded analytics as your application continues to grow 

and evolve. 

Learn more about how embedded analytics fits in your tech stack. 
Read the ebook: Are Your Embedded Analytics DevOps-Friendly? 
 

About Logi Analytics

Delivering compelling applications with analytics at their core has never been more crucial—or more 

complex. Logi is the only developer-grade analytics platform focused exclusively on embedding 

analytics in commercial and enterprise applications. Logi leverages your existing tech stack and sup-

ports unlimited customization and white-labeling, so you can quickly build a completely unique 

analytics experience.

Over 1,900 applications have trusted the Logi platform to deliver sophisticated analytics capabilities 

and power their businesses. The company is headquartered in McLean, Virginia, with o�ces in Ireland 

and England. Learn more at LogiAnalytics.com.
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Is analytics a strategic goal in your organization? 

If you host your environment and realize analytics is a strategic goal, then it’s worth investing in a 

Data Warehouse/Data Mart. To design a Data Warehouse/Data Mart e�ectively, the first step is to 

make sure you understand the types of queries and use cases for your end user. This allows you to 

build and implement the environment correctly and optimize it for the types of queries and use cases 

it will handle. 

How large is your Data Warehouse/Data Mart? 

If your starting point is a Data Warehouse/Data Mart, moving to a Modern Analytics Database will depend on 
how large your current environment is and how critical performance is to your organization.

Also, if you are hosting your own Data Warehouse/Data Mart, you can save money in the long term with less 
hardware overall. 

Ultimately, your current technology and environment, skills, and performance needs will be critical drivers 

in your data architecture decision.

Now that we have examined how your analytics data architecture may evolve in practice, let’s take a look 

at what industry analysts recommend for an ideal modern data architecture.

Industry analysts have more to say about choosing a data architecture approach. In the Eckerson Group 

report, A Pragmatic Approach to Modern Data Architecture, David Wells explains the first step to modern-

izing your data architecture is to change your perspective on data. He writes, “Think of data not as some-

thing that is static and stored, but as something live, dynamic, and flowing through every business process.” 

What does this mean for the analytics architecture? It’s a shift away from traditional BI architecture—which 

is based on a linear data flow, structured data, rigid infrastructure, batch processing, and centralized 

services—and toward a modern approach based on multi-directional data flow, iterative workflow, both 

structured and unstructured data, elastic infrastructure, and decentralized/self-service services.

Gartner’s Planning Guide for Data and Analytics goes into more detail on conceiving an end-to-end 

analytics architecture that fuses data, insight, and action. In this architecture, there are four phases: data 

acquisition, organization, analysis, and delivery. The table on the next page summarizes the main guide-

lines related to each of these phases. 

Aggregate Tables or Material Views

Application development teams may opt to create aggregate tables or material views as another work-

around to using view or stored procedures. With an aggregate table, you can create a summary table of 

the data you need by running a “Group By” SQL query. For example, a marketing department can create 

an aggregate table that shows “Sales over a month.” Since most analytics queries typically involve aggre-

gation, using an aggregate table will prevent the need to aggregate the data for every query. In a material-

ized view, you can store query results in a table or database.  

The pros of using aggregate tables or material views include: 

Simplifies the SQL needed to run analytics 

Aggregating data improves query performance 

No need to aggregate data for every query

The downside of aggregate tables or material views is:

You need to figure out when and how to update the tables:

Triggers can help with synchronization of data, but typically add to load on transactional 

additions/updates and can be complex to implement. 

Update processes, which run on a periodic basis, may be another alternative—but you will need to 

implement logic that can distinguish between updates versus new transactions.

Another issue arises if you have new requirements where the necessary data is not in the aggregate 

tables or material views. You may have to go back to the transactional database to recreate your 

aggregate tables and start over.

Bottom Line: Pre-aggregated tables and materialized views will help with performance. However, you do 

need to stay organized and put strict processes in place to keep the aggregates up to date. 

Replication of Transactional Database

Replication is another common workaround that o�oads analytics queries from the production database 

to a replicated copy of the database. Replication requires copying and storing data in more than one site 

or node, so all of the analytics users share the same information. 

TOWARD A MODERN DATA ARCHITECTURE 
FOR EMBEDDED ANALYTICS

Depending on your organization’s particular setup and needs, you could take a number of di�erent 

approaches to data architecture for embedded analytics. Here, we outline the seven most common 

approaches—from a transactional database to a modern analytics database (columnar or in memory). 

Note that these are not individual steps in your data architecture journey. You may skip some approaches 

altogether, or use two simultaneously. This is not a prescribed path. 

Read on to explore each step, the pros and cons, and the impact on analytic workloads, as well 

as our recommendations. 

Transactional Database 

The starting point for many application development teams is the ubiquitous transactional database, 

which runs most production systems. Although they aren’t specifically built for analytics, transactional 

databases typically become the default analytics environment because they are already in place, and are 

familiar and accessible. 

Transactional databases are row stores, with each record/row keeping relevant information together. 

For example, for a travel website, each record/row may store relevant customer information, flight number, 

date of booking, and so on, and may be uniquely identified by Customer_ID. The database may contain 

several tables tracking other information related to the transaction, such as flight schedule, ticket prices, 

and country list. Transactional databases are known for very fast read/write updates and high data integrity. 

The pros of transactional databases include:

Most application development teams are familiar with this database structure and understand how to 

write queries to get the correct data.

As soon as data hits the transactional database, it is available for analytics.

The main downside of transactional databases is structure: They’re not designed for optimal analytics 

queries. This creates the following issues: 

You have to resort to complex joins and operations to gain insight into the data stored in a 

transactional database. In our travel website example, if you want to correlate the most popular flight 

bookings with country and time of year for a marketing campaign, you would have to come up with 

unwieldy joins across several tables.

Typically, performance of analytic queries will a�ect the performance of the transactional database

—and that may create lags in response time with both the analytics query and transactional system.

Bottom Line: Using transactional databases for embedded analytics makes sense if you already have them 

in place, but you will eventually run into limitations and need workarounds.

View or Stored Procedures

Typically, when developers start noticing problems with their transactional systems, they may opt to 

create some views or stored procedures. Views create the appearance of a table as a result set of a stored 

query. The view could be generated from a combination of rows and columns across multiple tables. 

While views only showcase the data, stored procedures allow you to execute SQL statements on the data. 

The pros of using views and stored procedures include:

Simplifies the SQL needed to run analytics

Allows users to filter the information they want to see

With stored procedures, users can make modifications to the underlying tables (with views, you can 

filter and sort only).

Provides a good abstraction layer if schemas are similar in di�erent underlying tables/columns

Views or stored procedures may be the next logical step from transactional databases, but they 

typically make performance worse. The cons include:

Complex views with lots of tables create additional joins. 

Stored procedures may result in filtering and post processing after the data is retrieved, which may 

significantly reduce your response time. 

Bottom Line: When it comes to embedded analytics, views or stored procedures risk creating lags and 

a�ecting your application’s response time. 

The pros of replication include:

Many databases have built-in replication facilities, so this is easier to implement. You can leverage 

transaction logging to publish changes to replicated databases, then re-apply the transactions. 

Removes analytical load from the production database.

Allows for di�erent indexing strategy that may create better indexes for analytics to be introduced. 

Aggregate tables can now be created on the replicated database rather than the production database. 

Allows your team to use a familiar database technology.

The main issue with replication is the lag between a new transaction hitting the database and that data 

being available in the replicated table. Other downsides include: 

The table structures are typically the same and subject to complex queries, creating aggregate tables, etc. 

If database replication is di�cult with provided tools, a replication technology may need to be 

introduced, implemented, and maintained.

Real-time queries may still need to hit the production database (dependent upon “lag” or data latency 

expectations). 

Bottom Line: Replicating the production database also means replicating the complexity of queries in 

your embedded analytics solution. 

Caching

Sometimes, application development teams may turn to caching to help with query performance. With 

caching, you can preprocess complex and slow-running queries so the resulting data is easier to access when 

the user requests the information. The cached location could be in memory, another table in the database, or 

a file-based system where the resulting data is stored temporarily to make it easier to access frequently. 

The pros of caching include:

Caching can help with performance where queries are repeated.

Caching can also enable better performance with federated data (data in multiple-source systems), 

particularly when data needs to be joined or filtered based on other queries. 

It’s relatively easy to set up, in most environments. 

With caching, you query the database once and re-use the data many times.

Caching works well in a stable environment, where data in the database does not change frequently. 

You will need to identify data to be cached and develop processes to refresh the cache on a periodic 

basis. Some downsides include:

If the cache isn’t reused, it can add to performance overhead.  

There are data latency issues involved with using caches, and in some cases (like real-time queries), 

caching may not be the best option. 

Where there are multiple sources, ensuring consistency and scheduling of cache refreshes can 

be complex.

Bottom Line: Caching can be a quick fix for improving embedded analytics performance, but the com-

plexity of multiple sources and data latency issues may lead to limitations over time. 

Data Mart/Data Warehouse

For a more sophisticated data architecture, application development teams may turn to data warehouses 

or data marts. Data warehouses are central repositories of integrated data from one or more disparate 

sources. Data marts contain a subset of a data warehouse designed for a specific reason (e.g., isolating 

data related to a particular line of business within the company).  

Data warehouses and data marts allow you to organize your data in a way that simplifies query complexi-

ty. Star and snowflake schemas are the common schema models associated with data warehouses and 

are logically structured to make analytics faster and easier to access. 

Other benefits of using a data warehouse or data mart include: 

Query performance is significantly improved. Since all the required data is in the data warehouse, this 

removes the need for querying multiple sources. 

You reduce the load on the transactional database. You can build a data warehouse and data mart 

using your existing database technology.

The main downside is that designing a data structure for particular use cases can be complex at first. If 

you are not familiar with star or snowflake schema and the ETL tools involved, then you may need 

support through this stage. Other downsides include: 

ETL involves having the skill set to understand and use data transformation tools. 

A need to understand how to lower data latency in scheduling updates to a data warehouse.

Additional quality control steps are needed to ensure the data in the data warehouse is valid; the new 

queries are running correctly; and each step in the ETL/ELT process is validated.  

It takes time to build, test, and manage.

You may still need to occasionally query the transaction system for real-time requirements. 

Bottom Line: Data warehouses and data marts are designed for faster analytics and response times, but 

implementation will take more time and be more complex. 

Modern Analytics Database

Even with a data warehouse in place, application development teams find that switching to a modern 

analytics database may be the best option for analytics queries. 

Modern analytics databases are typically columnar structures or in-memory structures. In columnar 

structures, data is stored at a granular column level in the form of many files. This structure makes it faster 

to query since only the columns associated with the query need to be read, not the entire row.  This 

significantly increases performance. For in-memory structures, the data is loaded into the memory, which 

makes reading/writing dramatically faster than a disk-based structure. 

Pros of a modern analytics database include:

Improved performance on data load. ELT is faster, since data transformations occur on the analytics 

database platform. 

Optimal query performance since the database enables easier management of “flat tables” associated 

with star schemas. 

Databases that are designed for fast queries and optimized data storage, which is important for large 

volumes of data. 

There is a learning curve associated with switching to a modern analytics database. You will need to 

learn to operate and support a new database technology. You will also need to learn how to optimize 

the database performance with new concepts such as projections rather than indexes. Other 

downsides include:

Unlike transactional databases, analytics databases perform updates and deletions poorly. 

You may need to implement workarounds for this, such as partition design to improve where data 

needs updating, or new data transformation strategies to avoid update/deletion issues. 

You also need to determine the update frequency for data. 

Bottom Line: The modern analytics database is optimal for faster queries and dealing with large volumes 

of data, but it requires specialized skills and can be costly to implement. 

Some data architecture approaches will be better suited to your organization than others, and you may 

skip some approaches altogether. It all depends on your particular setup and needs. So how do you find 

the approach that’s best for you? 

Consider these common data scenarios and recommended architecture approaches: 

Where is your solution located? On premise or SaaS? 

If your solution is on your customer’s premises, then creating Views, Stored procedures and/or 

Aggregate tables will be the easiest first step to implement.  

If you are hosting the solution for your customers, and performance of your transactional database is 

critical, then Replication is a good first step. Replication will remove the analytics load from the 

transactional database. You may add Aggregate tables as a next step and eventually consider moving 

into a Data Warehouse/Data Mart. 

How large and complex is your environment? 

When customers use your solution, does it mean large data volumes where performance is critical? 

Then investing in Replication and/or a Data Warehouse will justify the additional hardware and 

costs of implementation, since they will quickly run into the limitations of working with Views and 

Stored Procedures. 

Choosing the right approach to data architecture will depend on your organization’s particular needs. 

While it may seem overwhelming to modernize your data analytics architecture—especially if developing 

embedded analytics is not a core competency of your engineering and product teams—it can be done. 

Gartner’s 2019 Planning Guide for Data and Analytics advises application development teams to start 

small and build in stages, beginning with a business challenge that can be solved. You may also consider 

partnering with a third-party embedded analytics platform that is already built on modern data architec-

ture principles. This will allow you to scale your embedded analytics as your application continues to grow 

and evolve. 

Learn more about how embedded analytics fits in your tech stack. 
Read the ebook: Are Your Embedded Analytics DevOps-Friendly? 
 

About Logi Analytics

Delivering compelling applications with analytics at their core has never been more crucial—or more 

complex. Logi is the only developer-grade analytics platform focused exclusively on embedding 

analytics in commercial and enterprise applications. Logi leverages your existing tech stack and sup-

ports unlimited customization and white-labeling, so you can quickly build a completely unique 

analytics experience.
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Is analytics a strategic goal in your organization? 

If you host your environment and realize analytics is a strategic goal, then it’s worth investing in a 

Data Warehouse/Data Mart. To design a Data Warehouse/Data Mart e�ectively, the first step is to 

make sure you understand the types of queries and use cases for your end user. This allows you to 

build and implement the environment correctly and optimize it for the types of queries and use cases 

it will handle. 

How large is your Data Warehouse/Data Mart? 

If your starting point is a Data Warehouse/Data Mart, moving to a Modern Analytics Database will depend on 
how large your current environment is and how critical performance is to your organization.

Also, if you are hosting your own Data Warehouse/Data Mart, you can save money in the long term with less 
hardware overall. 

Ultimately, your current technology and environment, skills, and performance needs will be critical drivers 

in your data architecture decision.

Now that we have examined how your analytics data architecture may evolve in practice, let’s take a look 

at what industry analysts recommend for an ideal modern data architecture.

Industry analysts have more to say about choosing a data architecture approach. In the Eckerson Group 

report, A Pragmatic Approach to Modern Data Architecture, David Wells explains the first step to modern-

izing your data architecture is to change your perspective on data. He writes, “Think of data not as some-

thing that is static and stored, but as something live, dynamic, and flowing through every business process.” 

What does this mean for the analytics architecture? It’s a shift away from traditional BI architecture—which 

is based on a linear data flow, structured data, rigid infrastructure, batch processing, and centralized 

services—and toward a modern approach based on multi-directional data flow, iterative workflow, both 

structured and unstructured data, elastic infrastructure, and decentralized/self-service services.

Gartner’s Planning Guide for Data and Analytics goes into more detail on conceiving an end-to-end 

analytics architecture that fuses data, insight, and action. In this architecture, there are four phases: data 

acquisition, organization, analysis, and delivery. The table on the next page summarizes the main guide-

lines related to each of these phases. 

Aggregate Tables or Material Views

Application development teams may opt to create aggregate tables or material views as another work-

around to using view or stored procedures. With an aggregate table, you can create a summary table of 

the data you need by running a “Group By” SQL query. For example, a marketing department can create 

an aggregate table that shows “Sales over a month.” Since most analytics queries typically involve aggre-

gation, using an aggregate table will prevent the need to aggregate the data for every query. In a material-

ized view, you can store query results in a table or database.  

The pros of using aggregate tables or material views include: 

Simplifies the SQL needed to run analytics 

Aggregating data improves query performance 

No need to aggregate data for every query

The downside of aggregate tables or material views is:

You need to figure out when and how to update the tables:

Triggers can help with synchronization of data, but typically add to load on transactional 

additions/updates and can be complex to implement. 

Update processes, which run on a periodic basis, may be another alternative—but you will need to 

implement logic that can distinguish between updates versus new transactions.

Another issue arises if you have new requirements where the necessary data is not in the aggregate 

tables or material views. You may have to go back to the transactional database to recreate your 

aggregate tables and start over.

Bottom Line: Pre-aggregated tables and materialized views will help with performance. However, you do 

need to stay organized and put strict processes in place to keep the aggregates up to date. 

Replication of Transactional Database

Replication is another common workaround that o�oads analytics queries from the production database 

to a replicated copy of the database. Replication requires copying and storing data in more than one site 

or node, so all of the analytics users share the same information. 

Depending on your organization’s particular setup and needs, you could take a number of di�erent 

approaches to data architecture for embedded analytics. Here, we outline the seven most common 

approaches—from a transactional database to a modern analytics database (columnar or in memory). 

Note that these are not individual steps in your data architecture journey. You may skip some approaches 

altogether, or use two simultaneously. This is not a prescribed path. 

Read on to explore each step, the pros and cons, and the impact on analytic workloads, as well 

as our recommendations. 

Transactional Database 

The starting point for many application development teams is the ubiquitous transactional database, 

which runs most production systems. Although they aren’t specifically built for analytics, transactional 

databases typically become the default analytics environment because they are already in place, and are 

familiar and accessible. 

Transactional databases are row stores, with each record/row keeping relevant information together. 

For example, for a travel website, each record/row may store relevant customer information, flight number, 

date of booking, and so on, and may be uniquely identified by Customer_ID. The database may contain 

several tables tracking other information related to the transaction, such as flight schedule, ticket prices, 

and country list. Transactional databases are known for very fast read/write updates and high data integrity. 

The pros of transactional databases include:

Most application development teams are familiar with this database structure and understand how to 

write queries to get the correct data.

As soon as data hits the transactional database, it is available for analytics.

The main downside of transactional databases is structure: They’re not designed for optimal analytics 

queries. This creates the following issues: 

You have to resort to complex joins and operations to gain insight into the data stored in a 

transactional database. In our travel website example, if you want to correlate the most popular flight 

bookings with country and time of year for a marketing campaign, you would have to come up with 

unwieldy joins across several tables.

Typically, performance of analytic queries will a�ect the performance of the transactional database

—and that may create lags in response time with both the analytics query and transactional system.

Bottom Line: Using transactional databases for embedded analytics makes sense if you already have them 

in place, but you will eventually run into limitations and need workarounds.

View or Stored Procedures

Typically, when developers start noticing problems with their transactional systems, they may opt to 

create some views or stored procedures. Views create the appearance of a table as a result set of a stored 

query. The view could be generated from a combination of rows and columns across multiple tables. 

While views only showcase the data, stored procedures allow you to execute SQL statements on the data. 

The pros of using views and stored procedures include:

Simplifies the SQL needed to run analytics

Allows users to filter the information they want to see

With stored procedures, users can make modifications to the underlying tables (with views, you can 

filter and sort only).

Provides a good abstraction layer if schemas are similar in di�erent underlying tables/columns

Views or stored procedures may be the next logical step from transactional databases, but they 

typically make performance worse. The cons include:

Complex views with lots of tables create additional joins. 

Stored procedures may result in filtering and post processing after the data is retrieved, which may 

significantly reduce your response time. 

Bottom Line: When it comes to embedded analytics, views or stored procedures risk creating lags and 

a�ecting your application’s response time. 

TOWARD A MODERN DATA ARCHITECTURE 
FOR EMBEDDED ANALYTICS

The pros of replication include:

Many databases have built-in replication facilities, so this is easier to implement. You can leverage 

transaction logging to publish changes to replicated databases, then re-apply the transactions. 

Removes analytical load from the production database.

Allows for di�erent indexing strategy that may create better indexes for analytics to be introduced. 

Aggregate tables can now be created on the replicated database rather than the production database. 

Allows your team to use a familiar database technology.

The main issue with replication is the lag between a new transaction hitting the database and that data 

being available in the replicated table. Other downsides include: 

The table structures are typically the same and subject to complex queries, creating aggregate tables, etc. 

If database replication is di�cult with provided tools, a replication technology may need to be 

introduced, implemented, and maintained.

Real-time queries may still need to hit the production database (dependent upon “lag” or data latency 

expectations). 

Bottom Line: Replicating the production database also means replicating the complexity of queries in 

your embedded analytics solution. 

Caching

Sometimes, application development teams may turn to caching to help with query performance. With 

caching, you can preprocess complex and slow-running queries so the resulting data is easier to access when 

the user requests the information. The cached location could be in memory, another table in the database, or 

a file-based system where the resulting data is stored temporarily to make it easier to access frequently. 

The pros of caching include:

Caching can help with performance where queries are repeated.

Caching can also enable better performance with federated data (data in multiple-source systems), 

particularly when data needs to be joined or filtered based on other queries. 

It’s relatively easy to set up, in most environments. 

With caching, you query the database once and re-use the data many times.

Caching works well in a stable environment, where data in the database does not change frequently. 

You will need to identify data to be cached and develop processes to refresh the cache on a periodic 

basis. Some downsides include:

If the cache isn’t reused, it can add to performance overhead.  

There are data latency issues involved with using caches, and in some cases (like real-time queries), 

caching may not be the best option. 

Where there are multiple sources, ensuring consistency and scheduling of cache refreshes can 

be complex.

Bottom Line: Caching can be a quick fix for improving embedded analytics performance, but the com-

plexity of multiple sources and data latency issues may lead to limitations over time. 

Data Mart/Data Warehouse

For a more sophisticated data architecture, application development teams may turn to data warehouses 

or data marts. Data warehouses are central repositories of integrated data from one or more disparate 

sources. Data marts contain a subset of a data warehouse designed for a specific reason (e.g., isolating 

data related to a particular line of business within the company).  

Data warehouses and data marts allow you to organize your data in a way that simplifies query complexi-

ty. Star and snowflake schemas are the common schema models associated with data warehouses and 

are logically structured to make analytics faster and easier to access. 

Other benefits of using a data warehouse or data mart include: 

Query performance is significantly improved. Since all the required data is in the data warehouse, this 

removes the need for querying multiple sources. 

You reduce the load on the transactional database. You can build a data warehouse and data mart 

using your existing database technology.

The main downside is that designing a data structure for particular use cases can be complex at first. If 

you are not familiar with star or snowflake schema and the ETL tools involved, then you may need 

support through this stage. Other downsides include: 

ETL involves having the skill set to understand and use data transformation tools. 

A need to understand how to lower data latency in scheduling updates to a data warehouse.

Additional quality control steps are needed to ensure the data in the data warehouse is valid; the new 

queries are running correctly; and each step in the ETL/ELT process is validated.  

It takes time to build, test, and manage.

You may still need to occasionally query the transaction system for real-time requirements. 

Bottom Line: Data warehouses and data marts are designed for faster analytics and response times, but 

implementation will take more time and be more complex. 

Modern Analytics Database

Even with a data warehouse in place, application development teams find that switching to a modern 

analytics database may be the best option for analytics queries. 

Modern analytics databases are typically columnar structures or in-memory structures. In columnar 

structures, data is stored at a granular column level in the form of many files. This structure makes it faster 

to query since only the columns associated with the query need to be read, not the entire row.  This 

significantly increases performance. For in-memory structures, the data is loaded into the memory, which 

makes reading/writing dramatically faster than a disk-based structure. 

Pros of a modern analytics database include:

Improved performance on data load. ELT is faster, since data transformations occur on the analytics 

database platform. 

Optimal query performance since the database enables easier management of “flat tables” associated 

with star schemas. 

Databases that are designed for fast queries and optimized data storage, which is important for large 

volumes of data. 

There is a learning curve associated with switching to a modern analytics database. You will need to 

learn to operate and support a new database technology. You will also need to learn how to optimize 

the database performance with new concepts such as projections rather than indexes. Other 

downsides include:

Unlike transactional databases, analytics databases perform updates and deletions poorly. 

You may need to implement workarounds for this, such as partition design to improve where data 

needs updating, or new data transformation strategies to avoid update/deletion issues. 

You also need to determine the update frequency for data. 

Bottom Line: The modern analytics database is optimal for faster queries and dealing with large volumes 

of data, but it requires specialized skills and can be costly to implement. 

Some data architecture approaches will be better suited to your organization than others, and you may 

skip some approaches altogether. It all depends on your particular setup and needs. So how do you find 

the approach that’s best for you? 

Consider these common data scenarios and recommended architecture approaches: 

Where is your solution located? On premise or SaaS? 

If your solution is on your customer’s premises, then creating Views, Stored procedures and/or 

Aggregate tables will be the easiest first step to implement.  

If you are hosting the solution for your customers, and performance of your transactional database is 

critical, then Replication is a good first step. Replication will remove the analytics load from the 

transactional database. You may add Aggregate tables as a next step and eventually consider moving 

into a Data Warehouse/Data Mart. 

How large and complex is your environment? 

When customers use your solution, does it mean large data volumes where performance is critical? 

Then investing in Replication and/or a Data Warehouse will justify the additional hardware and 

costs of implementation, since they will quickly run into the limitations of working with Views and 

Stored Procedures. 

Choosing the right approach to data architecture will depend on your organization’s particular needs. 

While it may seem overwhelming to modernize your data analytics architecture—especially if developing 

embedded analytics is not a core competency of your engineering and product teams—it can be done. 

Gartner’s 2019 Planning Guide for Data and Analytics advises application development teams to start 

small and build in stages, beginning with a business challenge that can be solved. You may also consider 

partnering with a third-party embedded analytics platform that is already built on modern data architec-

ture principles. This will allow you to scale your embedded analytics as your application continues to grow 

and evolve. 

Learn more about how embedded analytics fits in your tech stack. 
Read the ebook: Are Your Embedded Analytics DevOps-Friendly? 
 

About Logi Analytics

Delivering compelling applications with analytics at their core has never been more crucial—or more 

complex. Logi is the only developer-grade analytics platform focused exclusively on embedding 

analytics in commercial and enterprise applications. Logi leverages your existing tech stack and sup-

ports unlimited customization and white-labeling, so you can quickly build a completely unique 

analytics experience.

Over 1,900 applications have trusted the Logi platform to deliver sophisticated analytics capabilities 
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and England. Learn more at LogiAnalytics.com.
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Is analytics a strategic goal in your organization? 

If you host your environment and realize analytics is a strategic goal, then it’s worth investing in a 

Data Warehouse/Data Mart. To design a Data Warehouse/Data Mart e�ectively, the first step is to 

make sure you understand the types of queries and use cases for your end user. This allows you to 

build and implement the environment correctly and optimize it for the types of queries and use cases 

it will handle. 

How large is your Data Warehouse/Data Mart? 

If your starting point is a Data Warehouse/Data Mart, moving to a Modern Analytics Database will depend on 
how large your current environment is and how critical performance is to your organization.

Also, if you are hosting your own Data Warehouse/Data Mart, you can save money in the long term with less 
hardware overall. 

Ultimately, your current technology and environment, skills, and performance needs will be critical drivers 

in your data architecture decision.

Now that we have examined how your analytics data architecture may evolve in practice, let’s take a look 

at what industry analysts recommend for an ideal modern data architecture.

Industry analysts have more to say about choosing a data architecture approach. In the Eckerson Group 

report, A Pragmatic Approach to Modern Data Architecture, David Wells explains the first step to modern-

izing your data architecture is to change your perspective on data. He writes, “Think of data not as some-

thing that is static and stored, but as something live, dynamic, and flowing through every business process.” 

What does this mean for the analytics architecture? It’s a shift away from traditional BI architecture—which 

is based on a linear data flow, structured data, rigid infrastructure, batch processing, and centralized 

services—and toward a modern approach based on multi-directional data flow, iterative workflow, both 

structured and unstructured data, elastic infrastructure, and decentralized/self-service services.

Gartner’s Planning Guide for Data and Analytics goes into more detail on conceiving an end-to-end 

analytics architecture that fuses data, insight, and action. In this architecture, there are four phases: data 

acquisition, organization, analysis, and delivery. The table on the next page summarizes the main guide-

lines related to each of these phases. 

Aggregate Tables or Material Views

Application development teams may opt to create aggregate tables or material views as another work-

around to using view or stored procedures. With an aggregate table, you can create a summary table of 

the data you need by running a “Group By” SQL query. For example, a marketing department can create 

an aggregate table that shows “Sales over a month.” Since most analytics queries typically involve aggre-

gation, using an aggregate table will prevent the need to aggregate the data for every query. In a material-

ized view, you can store query results in a table or database.  

The pros of using aggregate tables or material views include: 

Simplifies the SQL needed to run analytics 

Aggregating data improves query performance 

No need to aggregate data for every query

The downside of aggregate tables or material views is:

You need to figure out when and how to update the tables:

Triggers can help with synchronization of data, but typically add to load on transactional 

additions/updates and can be complex to implement. 

Update processes, which run on a periodic basis, may be another alternative—but you will need to 

implement logic that can distinguish between updates versus new transactions.

Another issue arises if you have new requirements where the necessary data is not in the aggregate 

tables or material views. You may have to go back to the transactional database to recreate your 

aggregate tables and start over.

Bottom Line: Pre-aggregated tables and materialized views will help with performance. However, you do 

need to stay organized and put strict processes in place to keep the aggregates up to date. 

Replication of Transactional Database

Replication is another common workaround that o�oads analytics queries from the production database 

to a replicated copy of the database. Replication requires copying and storing data in more than one site 

or node, so all of the analytics users share the same information. 

Depending on your organization’s particular setup and needs, you could take a number of di�erent 

approaches to data architecture for embedded analytics. Here, we outline the seven most common 

approaches—from a transactional database to a modern analytics database (columnar or in memory). 

Note that these are not individual steps in your data architecture journey. You may skip some approaches 

altogether, or use two simultaneously. This is not a prescribed path. 

Read on to explore each step, the pros and cons, and the impact on analytic workloads, as well 

as our recommendations. 

Transactional Database 

The starting point for many application development teams is the ubiquitous transactional database, 

which runs most production systems. Although they aren’t specifically built for analytics, transactional 

databases typically become the default analytics environment because they are already in place, and are 

familiar and accessible. 

Transactional databases are row stores, with each record/row keeping relevant information together. 

For example, for a travel website, each record/row may store relevant customer information, flight number, 

date of booking, and so on, and may be uniquely identified by Customer_ID. The database may contain 

several tables tracking other information related to the transaction, such as flight schedule, ticket prices, 

and country list. Transactional databases are known for very fast read/write updates and high data integrity. 

The pros of transactional databases include:

Most application development teams are familiar with this database structure and understand how to 

write queries to get the correct data.

As soon as data hits the transactional database, it is available for analytics.

The main downside of transactional databases is structure: They’re not designed for optimal analytics 

queries. This creates the following issues: 

You have to resort to complex joins and operations to gain insight into the data stored in a 

transactional database. In our travel website example, if you want to correlate the most popular flight 

bookings with country and time of year for a marketing campaign, you would have to come up with 

unwieldy joins across several tables.

Typically, performance of analytic queries will a�ect the performance of the transactional database

—and that may create lags in response time with both the analytics query and transactional system.

Bottom Line: Using transactional databases for embedded analytics makes sense if you already have them 

in place, but you will eventually run into limitations and need workarounds.

View or Stored Procedures

Typically, when developers start noticing problems with their transactional systems, they may opt to 

create some views or stored procedures. Views create the appearance of a table as a result set of a stored 

query. The view could be generated from a combination of rows and columns across multiple tables. 

While views only showcase the data, stored procedures allow you to execute SQL statements on the data. 

The pros of using views and stored procedures include:

Simplifies the SQL needed to run analytics

Allows users to filter the information they want to see

With stored procedures, users can make modifications to the underlying tables (with views, you can 

filter and sort only).

Provides a good abstraction layer if schemas are similar in di�erent underlying tables/columns

Views or stored procedures may be the next logical step from transactional databases, but they 

typically make performance worse. The cons include:

Complex views with lots of tables create additional joins. 

Stored procedures may result in filtering and post processing after the data is retrieved, which may 

significantly reduce your response time. 

Bottom Line: When it comes to embedded analytics, views or stored procedures risk creating lags and 

a�ecting your application’s response time. 

The pros of replication include:

Many databases have built-in replication facilities, so this is easier to implement. You can leverage 

transaction logging to publish changes to replicated databases, then re-apply the transactions. 

Removes analytical load from the production database.

Allows for di�erent indexing strategy that may create better indexes for analytics to be introduced. 

Aggregate tables can now be created on the replicated database rather than the production database. 

Allows your team to use a familiar database technology.

The main issue with replication is the lag between a new transaction hitting the database and that data 

being available in the replicated table. Other downsides include: 

The table structures are typically the same and subject to complex queries, creating aggregate tables, etc. 

If database replication is di�cult with provided tools, a replication technology may need to be 

introduced, implemented, and maintained.

Real-time queries may still need to hit the production database (dependent upon “lag” or data latency 

expectations). 

Bottom Line: Replicating the production database also means replicating the complexity of queries in 

your embedded analytics solution. 

Caching

Sometimes, application development teams may turn to caching to help with query performance. With 

caching, you can preprocess complex and slow-running queries so the resulting data is easier to access when 

the user requests the information. The cached location could be in memory, another table in the database, or 

a file-based system where the resulting data is stored temporarily to make it easier to access frequently. 

The pros of caching include:

Caching can help with performance where queries are repeated.

Caching can also enable better performance with federated data (data in multiple-source systems), 

particularly when data needs to be joined or filtered based on other queries. 

It’s relatively easy to set up, in most environments. 

With caching, you query the database once and re-use the data many times.

TOWARD A MODERN DATA ARCHITECTURE 
FOR EMBEDDED ANALYTICS

Caching works well in a stable environment, where data in the database does not change frequently. 

You will need to identify data to be cached and develop processes to refresh the cache on a periodic 

basis. Some downsides include:

If the cache isn’t reused, it can add to performance overhead.  

There are data latency issues involved with using caches, and in some cases (like real-time queries), 

caching may not be the best option. 

Where there are multiple sources, ensuring consistency and scheduling of cache refreshes can 

be complex.

Bottom Line: Caching can be a quick fix for improving embedded analytics performance, but the com-

plexity of multiple sources and data latency issues may lead to limitations over time. 

Data Mart/Data Warehouse

For a more sophisticated data architecture, application development teams may turn to data warehouses 

or data marts. Data warehouses are central repositories of integrated data from one or more disparate 

sources. Data marts contain a subset of a data warehouse designed for a specific reason (e.g., isolating 

data related to a particular line of business within the company).  

Data warehouses and data marts allow you to organize your data in a way that simplifies query complexi-

ty. Star and snowflake schemas are the common schema models associated with data warehouses and 

are logically structured to make analytics faster and easier to access. 

Other benefits of using a data warehouse or data mart include: 

Query performance is significantly improved. Since all the required data is in the data warehouse, this 

removes the need for querying multiple sources. 

You reduce the load on the transactional database. You can build a data warehouse and data mart 

using your existing database technology.

The main downside is that designing a data structure for particular use cases can be complex at first. If 

you are not familiar with star or snowflake schema and the ETL tools involved, then you may need 

support through this stage. Other downsides include: 

ETL involves having the skill set to understand and use data transformation tools. 

A need to understand how to lower data latency in scheduling updates to a data warehouse.

Additional quality control steps are needed to ensure the data in the data warehouse is valid; the new 

queries are running correctly; and each step in the ETL/ELT process is validated.  

It takes time to build, test, and manage.

You may still need to occasionally query the transaction system for real-time requirements. 

Bottom Line: Data warehouses and data marts are designed for faster analytics and response times, but 

implementation will take more time and be more complex. 

Modern Analytics Database

Even with a data warehouse in place, application development teams find that switching to a modern 

analytics database may be the best option for analytics queries. 

Modern analytics databases are typically columnar structures or in-memory structures. In columnar 

structures, data is stored at a granular column level in the form of many files. This structure makes it faster 

to query since only the columns associated with the query need to be read, not the entire row.  This 

significantly increases performance. For in-memory structures, the data is loaded into the memory, which 

makes reading/writing dramatically faster than a disk-based structure. 

Pros of a modern analytics database include:

Improved performance on data load. ELT is faster, since data transformations occur on the analytics 

database platform. 

Optimal query performance since the database enables easier management of “flat tables” associated 

with star schemas. 

Databases that are designed for fast queries and optimized data storage, which is important for large 

volumes of data. 

There is a learning curve associated with switching to a modern analytics database. You will need to 

learn to operate and support a new database technology. You will also need to learn how to optimize 

the database performance with new concepts such as projections rather than indexes. Other 

downsides include:

Unlike transactional databases, analytics databases perform updates and deletions poorly. 

You may need to implement workarounds for this, such as partition design to improve where data 

needs updating, or new data transformation strategies to avoid update/deletion issues. 

You also need to determine the update frequency for data. 

Bottom Line: The modern analytics database is optimal for faster queries and dealing with large volumes 

of data, but it requires specialized skills and can be costly to implement. 

Some data architecture approaches will be better suited to your organization than others, and you may 

skip some approaches altogether. It all depends on your particular setup and needs. So how do you find 

the approach that’s best for you? 

Consider these common data scenarios and recommended architecture approaches: 

Where is your solution located? On premise or SaaS? 

If your solution is on your customer’s premises, then creating Views, Stored procedures and/or 

Aggregate tables will be the easiest first step to implement.  

If you are hosting the solution for your customers, and performance of your transactional database is 

critical, then Replication is a good first step. Replication will remove the analytics load from the 

transactional database. You may add Aggregate tables as a next step and eventually consider moving 

into a Data Warehouse/Data Mart. 

How large and complex is your environment? 

When customers use your solution, does it mean large data volumes where performance is critical? 

Then investing in Replication and/or a Data Warehouse will justify the additional hardware and 

costs of implementation, since they will quickly run into the limitations of working with Views and 

Stored Procedures. 

Choosing the right approach to data architecture will depend on your organization’s particular needs. 

While it may seem overwhelming to modernize your data analytics architecture—especially if developing 

embedded analytics is not a core competency of your engineering and product teams—it can be done. 

Gartner’s 2019 Planning Guide for Data and Analytics advises application development teams to start 

small and build in stages, beginning with a business challenge that can be solved. You may also consider 

partnering with a third-party embedded analytics platform that is already built on modern data architec-

ture principles. This will allow you to scale your embedded analytics as your application continues to grow 

and evolve. 

Learn more about how embedded analytics fits in your tech stack. 
Read the ebook: Are Your Embedded Analytics DevOps-Friendly? 
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Delivering compelling applications with analytics at their core has never been more crucial—or more 
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Is analytics a strategic goal in your organization? 

If you host your environment and realize analytics is a strategic goal, then it’s worth investing in a 

Data Warehouse/Data Mart. To design a Data Warehouse/Data Mart e�ectively, the first step is to 

make sure you understand the types of queries and use cases for your end user. This allows you to 

build and implement the environment correctly and optimize it for the types of queries and use cases 

it will handle. 

How large is your Data Warehouse/Data Mart? 

If your starting point is a Data Warehouse/Data Mart, moving to a Modern Analytics Database will depend on 
how large your current environment is and how critical performance is to your organization.

Also, if you are hosting your own Data Warehouse/Data Mart, you can save money in the long term with less 
hardware overall. 

Ultimately, your current technology and environment, skills, and performance needs will be critical drivers 

in your data architecture decision.

Now that we have examined how your analytics data architecture may evolve in practice, let’s take a look 

at what industry analysts recommend for an ideal modern data architecture.

Industry analysts have more to say about choosing a data architecture approach. In the Eckerson Group 

report, A Pragmatic Approach to Modern Data Architecture, David Wells explains the first step to modern-

izing your data architecture is to change your perspective on data. He writes, “Think of data not as some-

thing that is static and stored, but as something live, dynamic, and flowing through every business process.” 

What does this mean for the analytics architecture? It’s a shift away from traditional BI architecture—which 

is based on a linear data flow, structured data, rigid infrastructure, batch processing, and centralized 

services—and toward a modern approach based on multi-directional data flow, iterative workflow, both 

structured and unstructured data, elastic infrastructure, and decentralized/self-service services.

Gartner’s Planning Guide for Data and Analytics goes into more detail on conceiving an end-to-end 

analytics architecture that fuses data, insight, and action. In this architecture, there are four phases: data 

acquisition, organization, analysis, and delivery. The table on the next page summarizes the main guide-

lines related to each of these phases. 

Aggregate Tables or Material Views

Application development teams may opt to create aggregate tables or material views as another work-

around to using view or stored procedures. With an aggregate table, you can create a summary table of 

the data you need by running a “Group By” SQL query. For example, a marketing department can create 

an aggregate table that shows “Sales over a month.” Since most analytics queries typically involve aggre-

gation, using an aggregate table will prevent the need to aggregate the data for every query. In a material-

ized view, you can store query results in a table or database.  

The pros of using aggregate tables or material views include: 

Simplifies the SQL needed to run analytics 

Aggregating data improves query performance 

No need to aggregate data for every query

The downside of aggregate tables or material views is:

You need to figure out when and how to update the tables:

Triggers can help with synchronization of data, but typically add to load on transactional 

additions/updates and can be complex to implement. 

Update processes, which run on a periodic basis, may be another alternative—but you will need to 

implement logic that can distinguish between updates versus new transactions.

Another issue arises if you have new requirements where the necessary data is not in the aggregate 

tables or material views. You may have to go back to the transactional database to recreate your 

aggregate tables and start over.

Bottom Line: Pre-aggregated tables and materialized views will help with performance. However, you do 

need to stay organized and put strict processes in place to keep the aggregates up to date. 

Replication of Transactional Database

Replication is another common workaround that o�oads analytics queries from the production database 

to a replicated copy of the database. Replication requires copying and storing data in more than one site 

or node, so all of the analytics users share the same information. 

Depending on your organization’s particular setup and needs, you could take a number of di�erent 

approaches to data architecture for embedded analytics. Here, we outline the seven most common 

approaches—from a transactional database to a modern analytics database (columnar or in memory). 

Note that these are not individual steps in your data architecture journey. You may skip some approaches 

altogether, or use two simultaneously. This is not a prescribed path. 

Read on to explore each step, the pros and cons, and the impact on analytic workloads, as well 

as our recommendations. 

Transactional Database 

The starting point for many application development teams is the ubiquitous transactional database, 

which runs most production systems. Although they aren’t specifically built for analytics, transactional 

databases typically become the default analytics environment because they are already in place, and are 

familiar and accessible. 

Transactional databases are row stores, with each record/row keeping relevant information together. 

For example, for a travel website, each record/row may store relevant customer information, flight number, 

date of booking, and so on, and may be uniquely identified by Customer_ID. The database may contain 

several tables tracking other information related to the transaction, such as flight schedule, ticket prices, 

and country list. Transactional databases are known for very fast read/write updates and high data integrity. 

The pros of transactional databases include:

Most application development teams are familiar with this database structure and understand how to 

write queries to get the correct data.

As soon as data hits the transactional database, it is available for analytics.

The main downside of transactional databases is structure: They’re not designed for optimal analytics 

queries. This creates the following issues: 

You have to resort to complex joins and operations to gain insight into the data stored in a 

transactional database. In our travel website example, if you want to correlate the most popular flight 

bookings with country and time of year for a marketing campaign, you would have to come up with 

unwieldy joins across several tables.

Typically, performance of analytic queries will a�ect the performance of the transactional database

—and that may create lags in response time with both the analytics query and transactional system.

Bottom Line: Using transactional databases for embedded analytics makes sense if you already have them 

in place, but you will eventually run into limitations and need workarounds.

View or Stored Procedures

Typically, when developers start noticing problems with their transactional systems, they may opt to 

create some views or stored procedures. Views create the appearance of a table as a result set of a stored 

query. The view could be generated from a combination of rows and columns across multiple tables. 

While views only showcase the data, stored procedures allow you to execute SQL statements on the data. 

The pros of using views and stored procedures include:

Simplifies the SQL needed to run analytics

Allows users to filter the information they want to see

With stored procedures, users can make modifications to the underlying tables (with views, you can 

filter and sort only).

Provides a good abstraction layer if schemas are similar in di�erent underlying tables/columns

Views or stored procedures may be the next logical step from transactional databases, but they 

typically make performance worse. The cons include:

Complex views with lots of tables create additional joins. 

Stored procedures may result in filtering and post processing after the data is retrieved, which may 

significantly reduce your response time. 

Bottom Line: When it comes to embedded analytics, views or stored procedures risk creating lags and 

a�ecting your application’s response time. 

The pros of replication include:

Many databases have built-in replication facilities, so this is easier to implement. You can leverage 

transaction logging to publish changes to replicated databases, then re-apply the transactions. 

Removes analytical load from the production database.

Allows for di�erent indexing strategy that may create better indexes for analytics to be introduced. 

Aggregate tables can now be created on the replicated database rather than the production database. 

Allows your team to use a familiar database technology.

The main issue with replication is the lag between a new transaction hitting the database and that data 

being available in the replicated table. Other downsides include: 

The table structures are typically the same and subject to complex queries, creating aggregate tables, etc. 

If database replication is di�cult with provided tools, a replication technology may need to be 

introduced, implemented, and maintained.

Real-time queries may still need to hit the production database (dependent upon “lag” or data latency 

expectations). 

Bottom Line: Replicating the production database also means replicating the complexity of queries in 

your embedded analytics solution. 

Caching

Sometimes, application development teams may turn to caching to help with query performance. With 

caching, you can preprocess complex and slow-running queries so the resulting data is easier to access when 

the user requests the information. The cached location could be in memory, another table in the database, or 

a file-based system where the resulting data is stored temporarily to make it easier to access frequently. 

The pros of caching include:

Caching can help with performance where queries are repeated.

Caching can also enable better performance with federated data (data in multiple-source systems), 

particularly when data needs to be joined or filtered based on other queries. 

It’s relatively easy to set up, in most environments. 

With caching, you query the database once and re-use the data many times.

Caching works well in a stable environment, where data in the database does not change frequently. 

You will need to identify data to be cached and develop processes to refresh the cache on a periodic 

basis. Some downsides include:

If the cache isn’t reused, it can add to performance overhead.  

There are data latency issues involved with using caches, and in some cases (like real-time queries), 

caching may not be the best option. 

Where there are multiple sources, ensuring consistency and scheduling of cache refreshes can 

be complex.

Bottom Line: Caching can be a quick fix for improving embedded analytics performance, but the com-

plexity of multiple sources and data latency issues may lead to limitations over time. 

Data Mart/Data Warehouse

For a more sophisticated data architecture, application development teams may turn to data warehouses 

or data marts. Data warehouses are central repositories of integrated data from one or more disparate 

sources. Data marts contain a subset of a data warehouse designed for a specific reason (e.g., isolating 

data related to a particular line of business within the company).  

Data warehouses and data marts allow you to organize your data in a way that simplifies query complexi-

ty. Star and snowflake schemas are the common schema models associated with data warehouses and 

are logically structured to make analytics faster and easier to access. 

Other benefits of using a data warehouse or data mart include: 

Query performance is significantly improved. Since all the required data is in the data warehouse, this 

removes the need for querying multiple sources. 

You reduce the load on the transactional database. You can build a data warehouse and data mart 

using your existing database technology.
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The main downside is that designing a data structure for particular use cases can be complex at first. If 

you are not familiar with star or snowflake schema and the ETL tools involved, then you may need 

support through this stage. Other downsides include: 

ETL involves having the skill set to understand and use data transformation tools. 

A need to understand how to lower data latency in scheduling updates to a data warehouse.

Additional quality control steps are needed to ensure the data in the data warehouse is valid; the new 

queries are running correctly; and each step in the ETL/ELT process is validated.  

It takes time to build, test, and manage.

You may still need to occasionally query the transaction system for real-time requirements. 

Bottom Line: Data warehouses and data marts are designed for faster analytics and response times, but 

implementation will take more time and be more complex. 

Modern Analytics Database

Even with a data warehouse in place, application development teams find that switching to a modern 

analytics database may be the best option for analytics queries. 

Modern analytics databases are typically columnar structures or in-memory structures. In columnar 

structures, data is stored at a granular column level in the form of many files. This structure makes it faster 

to query since only the columns associated with the query need to be read, not the entire row.  This 

significantly increases performance. For in-memory structures, the data is loaded into the memory, which 

makes reading/writing dramatically faster than a disk-based structure. 

Pros of a modern analytics database include:

Improved performance on data load. ELT is faster, since data transformations occur on the analytics 

database platform. 

Optimal query performance since the database enables easier management of “flat tables” associated 

with star schemas. 

Databases that are designed for fast queries and optimized data storage, which is important for large 

volumes of data. 

There is a learning curve associated with switching to a modern analytics database. You will need to 

learn to operate and support a new database technology. You will also need to learn how to optimize 

the database performance with new concepts such as projections rather than indexes. Other 

downsides include:

Unlike transactional databases, analytics databases perform updates and deletions poorly. 

You may need to implement workarounds for this, such as partition design to improve where data 

needs updating, or new data transformation strategies to avoid update/deletion issues. 

You also need to determine the update frequency for data. 

Bottom Line: The modern analytics database is optimal for faster queries and dealing with large volumes 

of data, but it requires specialized skills and can be costly to implement. 

Some data architecture approaches will be better suited to your organization than others, and you may 

skip some approaches altogether. It all depends on your particular setup and needs. So how do you find 

the approach that’s best for you? 

Consider these common data scenarios and recommended architecture approaches: 

Where is your solution located? On premise or SaaS? 

If your solution is on your customer’s premises, then creating Views, Stored procedures and/or 

Aggregate tables will be the easiest first step to implement.  

If you are hosting the solution for your customers, and performance of your transactional database is 

critical, then Replication is a good first step. Replication will remove the analytics load from the 

transactional database. You may add Aggregate tables as a next step and eventually consider moving 

into a Data Warehouse/Data Mart. 

How large and complex is your environment? 

When customers use your solution, does it mean large data volumes where performance is critical? 

Then investing in Replication and/or a Data Warehouse will justify the additional hardware and 

costs of implementation, since they will quickly run into the limitations of working with Views and 

Stored Procedures. 

Choosing the right approach to data architecture will depend on your organization’s particular needs. 

While it may seem overwhelming to modernize your data analytics architecture—especially if developing 

embedded analytics is not a core competency of your engineering and product teams—it can be done. 

Gartner’s 2019 Planning Guide for Data and Analytics advises application development teams to start 

small and build in stages, beginning with a business challenge that can be solved. You may also consider 

partnering with a third-party embedded analytics platform that is already built on modern data architec-

ture principles. This will allow you to scale your embedded analytics as your application continues to grow 

and evolve. 

Learn more about how embedded analytics fits in your tech stack. 
Read the ebook: Are Your Embedded Analytics DevOps-Friendly? 
 

About Logi Analytics

Delivering compelling applications with analytics at their core has never been more crucial—or more 

complex. Logi is the only developer-grade analytics platform focused exclusively on embedding 

analytics in commercial and enterprise applications. Logi leverages your existing tech stack and sup-

ports unlimited customization and white-labeling, so you can quickly build a completely unique 

analytics experience.

Over 1,900 applications have trusted the Logi platform to deliver sophisticated analytics capabilities 

and power their businesses. The company is headquartered in McLean, Virginia, with o�ces in Ireland 

and England. Learn more at LogiAnalytics.com.
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Is analytics a strategic goal in your organization? 

If you host your environment and realize analytics is a strategic goal, then it’s worth investing in a 

Data Warehouse/Data Mart. To design a Data Warehouse/Data Mart e�ectively, the first step is to 

make sure you understand the types of queries and use cases for your end user. This allows you to 

build and implement the environment correctly and optimize it for the types of queries and use cases 

it will handle. 

How large is your Data Warehouse/Data Mart? 

If your starting point is a Data Warehouse/Data Mart, moving to a Modern Analytics Database will depend on 
how large your current environment is and how critical performance is to your organization.

Also, if you are hosting your own Data Warehouse/Data Mart, you can save money in the long term with less 
hardware overall. 

Ultimately, your current technology and environment, skills, and performance needs will be critical drivers 

in your data architecture decision.

Now that we have examined how your analytics data architecture may evolve in practice, let’s take a look 

at what industry analysts recommend for an ideal modern data architecture.

Industry analysts have more to say about choosing a data architecture approach. In the Eckerson Group 

report, A Pragmatic Approach to Modern Data Architecture, David Wells explains the first step to modern-

izing your data architecture is to change your perspective on data. He writes, “Think of data not as some-

thing that is static and stored, but as something live, dynamic, and flowing through every business process.” 

What does this mean for the analytics architecture? It’s a shift away from traditional BI architecture—which 

is based on a linear data flow, structured data, rigid infrastructure, batch processing, and centralized 

services—and toward a modern approach based on multi-directional data flow, iterative workflow, both 

structured and unstructured data, elastic infrastructure, and decentralized/self-service services.

Gartner’s Planning Guide for Data and Analytics goes into more detail on conceiving an end-to-end 

analytics architecture that fuses data, insight, and action. In this architecture, there are four phases: data 

acquisition, organization, analysis, and delivery. The table on the next page summarizes the main guide-

lines related to each of these phases. 

Aggregate Tables or Material Views

Application development teams may opt to create aggregate tables or material views as another work-

around to using view or stored procedures. With an aggregate table, you can create a summary table of 

the data you need by running a “Group By” SQL query. For example, a marketing department can create 

an aggregate table that shows “Sales over a month.” Since most analytics queries typically involve aggre-

gation, using an aggregate table will prevent the need to aggregate the data for every query. In a material-

ized view, you can store query results in a table or database.  

The pros of using aggregate tables or material views include: 

Simplifies the SQL needed to run analytics 

Aggregating data improves query performance 

No need to aggregate data for every query

The downside of aggregate tables or material views is:

You need to figure out when and how to update the tables:

Triggers can help with synchronization of data, but typically add to load on transactional 

additions/updates and can be complex to implement. 

Update processes, which run on a periodic basis, may be another alternative—but you will need to 

implement logic that can distinguish between updates versus new transactions.

Another issue arises if you have new requirements where the necessary data is not in the aggregate 

tables or material views. You may have to go back to the transactional database to recreate your 

aggregate tables and start over.

Bottom Line: Pre-aggregated tables and materialized views will help with performance. However, you do 

need to stay organized and put strict processes in place to keep the aggregates up to date. 

Replication of Transactional Database

Replication is another common workaround that o�oads analytics queries from the production database 

to a replicated copy of the database. Replication requires copying and storing data in more than one site 

or node, so all of the analytics users share the same information. 

Depending on your organization’s particular setup and needs, you could take a number of di�erent 

approaches to data architecture for embedded analytics. Here, we outline the seven most common 

approaches—from a transactional database to a modern analytics database (columnar or in memory). 

Note that these are not individual steps in your data architecture journey. You may skip some approaches 

altogether, or use two simultaneously. This is not a prescribed path. 

Read on to explore each step, the pros and cons, and the impact on analytic workloads, as well 

as our recommendations. 

Transactional Database 

The starting point for many application development teams is the ubiquitous transactional database, 

which runs most production systems. Although they aren’t specifically built for analytics, transactional 

databases typically become the default analytics environment because they are already in place, and are 

familiar and accessible. 

Transactional databases are row stores, with each record/row keeping relevant information together. 

For example, for a travel website, each record/row may store relevant customer information, flight number, 

date of booking, and so on, and may be uniquely identified by Customer_ID. The database may contain 

several tables tracking other information related to the transaction, such as flight schedule, ticket prices, 

and country list. Transactional databases are known for very fast read/write updates and high data integrity. 

The pros of transactional databases include:

Most application development teams are familiar with this database structure and understand how to 

write queries to get the correct data.

As soon as data hits the transactional database, it is available for analytics.

The main downside of transactional databases is structure: They’re not designed for optimal analytics 

queries. This creates the following issues: 

You have to resort to complex joins and operations to gain insight into the data stored in a 

transactional database. In our travel website example, if you want to correlate the most popular flight 

bookings with country and time of year for a marketing campaign, you would have to come up with 

unwieldy joins across several tables.

Typically, performance of analytic queries will a�ect the performance of the transactional database

—and that may create lags in response time with both the analytics query and transactional system.

Bottom Line: Using transactional databases for embedded analytics makes sense if you already have them 

in place, but you will eventually run into limitations and need workarounds.

View or Stored Procedures

Typically, when developers start noticing problems with their transactional systems, they may opt to 

create some views or stored procedures. Views create the appearance of a table as a result set of a stored 

query. The view could be generated from a combination of rows and columns across multiple tables. 

While views only showcase the data, stored procedures allow you to execute SQL statements on the data. 

The pros of using views and stored procedures include:

Simplifies the SQL needed to run analytics

Allows users to filter the information they want to see

With stored procedures, users can make modifications to the underlying tables (with views, you can 

filter and sort only).

Provides a good abstraction layer if schemas are similar in di�erent underlying tables/columns

Views or stored procedures may be the next logical step from transactional databases, but they 

typically make performance worse. The cons include:

Complex views with lots of tables create additional joins. 

Stored procedures may result in filtering and post processing after the data is retrieved, which may 

significantly reduce your response time. 

Bottom Line: When it comes to embedded analytics, views or stored procedures risk creating lags and 

a�ecting your application’s response time. 

The pros of replication include:

Many databases have built-in replication facilities, so this is easier to implement. You can leverage 

transaction logging to publish changes to replicated databases, then re-apply the transactions. 

Removes analytical load from the production database.

Allows for di�erent indexing strategy that may create better indexes for analytics to be introduced. 

Aggregate tables can now be created on the replicated database rather than the production database. 

Allows your team to use a familiar database technology.

The main issue with replication is the lag between a new transaction hitting the database and that data 

being available in the replicated table. Other downsides include: 

The table structures are typically the same and subject to complex queries, creating aggregate tables, etc. 

If database replication is di�cult with provided tools, a replication technology may need to be 

introduced, implemented, and maintained.

Real-time queries may still need to hit the production database (dependent upon “lag” or data latency 

expectations). 

Bottom Line: Replicating the production database also means replicating the complexity of queries in 

your embedded analytics solution. 

Caching

Sometimes, application development teams may turn to caching to help with query performance. With 

caching, you can preprocess complex and slow-running queries so the resulting data is easier to access when 

the user requests the information. The cached location could be in memory, another table in the database, or 

a file-based system where the resulting data is stored temporarily to make it easier to access frequently. 

The pros of caching include:

Caching can help with performance where queries are repeated.

Caching can also enable better performance with federated data (data in multiple-source systems), 

particularly when data needs to be joined or filtered based on other queries. 

It’s relatively easy to set up, in most environments. 

With caching, you query the database once and re-use the data many times.

Caching works well in a stable environment, where data in the database does not change frequently. 

You will need to identify data to be cached and develop processes to refresh the cache on a periodic 

basis. Some downsides include:

If the cache isn’t reused, it can add to performance overhead.  

There are data latency issues involved with using caches, and in some cases (like real-time queries), 

caching may not be the best option. 

Where there are multiple sources, ensuring consistency and scheduling of cache refreshes can 

be complex.

Bottom Line: Caching can be a quick fix for improving embedded analytics performance, but the com-

plexity of multiple sources and data latency issues may lead to limitations over time. 

Data Mart/Data Warehouse

For a more sophisticated data architecture, application development teams may turn to data warehouses 

or data marts. Data warehouses are central repositories of integrated data from one or more disparate 

sources. Data marts contain a subset of a data warehouse designed for a specific reason (e.g., isolating 

data related to a particular line of business within the company).  

Data warehouses and data marts allow you to organize your data in a way that simplifies query complexi-

ty. Star and snowflake schemas are the common schema models associated with data warehouses and 

are logically structured to make analytics faster and easier to access. 

Other benefits of using a data warehouse or data mart include: 

Query performance is significantly improved. Since all the required data is in the data warehouse, this 

removes the need for querying multiple sources. 

You reduce the load on the transactional database. You can build a data warehouse and data mart 

using your existing database technology.

The main downside is that designing a data structure for particular use cases can be complex at first. If 

you are not familiar with star or snowflake schema and the ETL tools involved, then you may need 

support through this stage. Other downsides include: 

ETL involves having the skill set to understand and use data transformation tools. 

A need to understand how to lower data latency in scheduling updates to a data warehouse.

Additional quality control steps are needed to ensure the data in the data warehouse is valid; the new 

queries are running correctly; and each step in the ETL/ELT process is validated.  

It takes time to build, test, and manage.

You may still need to occasionally query the transaction system for real-time requirements. 

Bottom Line: Data warehouses and data marts are designed for faster analytics and response times, but 

implementation will take more time and be more complex. 

Modern Analytics Database

Even with a data warehouse in place, application development teams find that switching to a modern 

analytics database may be the best option for analytics queries. 

Modern analytics databases are typically columnar structures or in-memory structures. In columnar 

structures, data is stored at a granular column level in the form of many files. This structure makes it faster 

to query since only the columns associated with the query need to be read, not the entire row.  This 

significantly increases performance. For in-memory structures, the data is loaded into the memory, which 

makes reading/writing dramatically faster than a disk-based structure. 

Pros of a modern analytics database include:

Improved performance on data load. ELT is faster, since data transformations occur on the analytics 

database platform. 

Optimal query performance since the database enables easier management of “flat tables” associated 

with star schemas. 

Databases that are designed for fast queries and optimized data storage, which is important for large 

volumes of data. 
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There is a learning curve associated with switching to a modern analytics database. You will need to 

learn to operate and support a new database technology. You will also need to learn how to optimize 

the database performance with new concepts such as projections rather than indexes. Other 

downsides include:

Unlike transactional databases, analytics databases perform updates and deletions poorly. 

You may need to implement workarounds for this, such as partition design to improve where data 

needs updating, or new data transformation strategies to avoid update/deletion issues. 

You also need to determine the update frequency for data. 

Bottom Line: The modern analytics database is optimal for faster queries and dealing with large volumes 

of data, but it requires specialized skills and can be costly to implement. 

Some data architecture approaches will be better suited to your organization than others, and you may 

skip some approaches altogether. It all depends on your particular setup and needs. So how do you find 

the approach that’s best for you? 

Consider these common data scenarios and recommended architecture approaches: 

Where is your solution located? On premise or SaaS? 

If your solution is on your customer’s premises, then creating Views, Stored procedures and/or 

Aggregate tables will be the easiest first step to implement.  

If you are hosting the solution for your customers, and performance of your transactional database is 

critical, then Replication is a good first step. Replication will remove the analytics load from the 

transactional database. You may add Aggregate tables as a next step and eventually consider moving 

into a Data Warehouse/Data Mart. 

How large and complex is your environment? 

When customers use your solution, does it mean large data volumes where performance is critical? 

Then investing in Replication and/or a Data Warehouse will justify the additional hardware and 

costs of implementation, since they will quickly run into the limitations of working with Views and 

Stored Procedures. 

Part 3: What data approach is right for you?

Choosing the right approach to data architecture will depend on your organization’s particular needs. 

While it may seem overwhelming to modernize your data analytics architecture—especially if developing 

embedded analytics is not a core competency of your engineering and product teams—it can be done. 

Gartner’s 2019 Planning Guide for Data and Analytics advises application development teams to start 

small and build in stages, beginning with a business challenge that can be solved. You may also consider 

partnering with a third-party embedded analytics platform that is already built on modern data architec-

ture principles. This will allow you to scale your embedded analytics as your application continues to grow 

and evolve. 

Learn more about how embedded analytics fits in your tech stack. 
Read the ebook: Are Your Embedded Analytics DevOps-Friendly? 
 

About Logi Analytics

Delivering compelling applications with analytics at their core has never been more crucial—or more 

complex. Logi is the only developer-grade analytics platform focused exclusively on embedding 

analytics in commercial and enterprise applications. Logi leverages your existing tech stack and sup-

ports unlimited customization and white-labeling, so you can quickly build a completely unique 

analytics experience.

Over 1,900 applications have trusted the Logi platform to deliver sophisticated analytics capabilities 
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Is analytics a strategic goal in your organization? 

If you host your environment and realize analytics is a strategic goal, then it’s worth investing in a 

Data Warehouse/Data Mart. To design a Data Warehouse/Data Mart e�ectively, the first step is to 

make sure you understand the types of queries and use cases for your end user. This allows you to 

build and implement the environment correctly and optimize it for the types of queries and use cases 

it will handle. 

How large is your Data Warehouse/Data Mart? 

If your starting point is a Data Warehouse/Data Mart, moving to a Modern Analytics Database will depend on 
how large your current environment is and how critical performance is to your organization.

Also, if you are hosting your own Data Warehouse/Data Mart, you can save money in the long term with less 
hardware overall. 

Ultimately, your current technology and environment, skills, and performance needs will be critical drivers 

in your data architecture decision.

Now that we have examined how your analytics data architecture may evolve in practice, let’s take a look 

at what industry analysts recommend for an ideal modern data architecture.

Industry analysts have more to say about choosing a data architecture approach. In the Eckerson Group 

report, A Pragmatic Approach to Modern Data Architecture, David Wells explains the first step to modern-

izing your data architecture is to change your perspective on data. He writes, “Think of data not as some-

thing that is static and stored, but as something live, dynamic, and flowing through every business process.” 

What does this mean for the analytics architecture? It’s a shift away from traditional BI architecture—which 

is based on a linear data flow, structured data, rigid infrastructure, batch processing, and centralized 

services—and toward a modern approach based on multi-directional data flow, iterative workflow, both 

structured and unstructured data, elastic infrastructure, and decentralized/self-service services.

Gartner’s Planning Guide for Data and Analytics goes into more detail on conceiving an end-to-end 

analytics architecture that fuses data, insight, and action. In this architecture, there are four phases: data 

acquisition, organization, analysis, and delivery. The table on the next page summarizes the main guide-

lines related to each of these phases. 

Aggregate Tables or Material Views

Application development teams may opt to create aggregate tables or material views as another work-

around to using view or stored procedures. With an aggregate table, you can create a summary table of 

the data you need by running a “Group By” SQL query. For example, a marketing department can create 

an aggregate table that shows “Sales over a month.” Since most analytics queries typically involve aggre-

gation, using an aggregate table will prevent the need to aggregate the data for every query. In a material-

ized view, you can store query results in a table or database.  

The pros of using aggregate tables or material views include: 

Simplifies the SQL needed to run analytics 

Aggregating data improves query performance 

No need to aggregate data for every query

The downside of aggregate tables or material views is:

You need to figure out when and how to update the tables:

Triggers can help with synchronization of data, but typically add to load on transactional 

additions/updates and can be complex to implement. 

Update processes, which run on a periodic basis, may be another alternative—but you will need to 

implement logic that can distinguish between updates versus new transactions.

Another issue arises if you have new requirements where the necessary data is not in the aggregate 

tables or material views. You may have to go back to the transactional database to recreate your 

aggregate tables and start over.

Bottom Line: Pre-aggregated tables and materialized views will help with performance. However, you do 

need to stay organized and put strict processes in place to keep the aggregates up to date. 

Replication of Transactional Database

Replication is another common workaround that o�oads analytics queries from the production database 

to a replicated copy of the database. Replication requires copying and storing data in more than one site 

or node, so all of the analytics users share the same information. 

Depending on your organization’s particular setup and needs, you could take a number of di�erent 

approaches to data architecture for embedded analytics. Here, we outline the seven most common 

approaches—from a transactional database to a modern analytics database (columnar or in memory). 

Note that these are not individual steps in your data architecture journey. You may skip some approaches 

altogether, or use two simultaneously. This is not a prescribed path. 

Read on to explore each step, the pros and cons, and the impact on analytic workloads, as well 

as our recommendations. 

Transactional Database 

The starting point for many application development teams is the ubiquitous transactional database, 

which runs most production systems. Although they aren’t specifically built for analytics, transactional 

databases typically become the default analytics environment because they are already in place, and are 

familiar and accessible. 

Transactional databases are row stores, with each record/row keeping relevant information together. 

For example, for a travel website, each record/row may store relevant customer information, flight number, 

date of booking, and so on, and may be uniquely identified by Customer_ID. The database may contain 

several tables tracking other information related to the transaction, such as flight schedule, ticket prices, 

and country list. Transactional databases are known for very fast read/write updates and high data integrity. 

The pros of transactional databases include:

Most application development teams are familiar with this database structure and understand how to 

write queries to get the correct data.

As soon as data hits the transactional database, it is available for analytics.

The main downside of transactional databases is structure: They’re not designed for optimal analytics 

queries. This creates the following issues: 

You have to resort to complex joins and operations to gain insight into the data stored in a 

transactional database. In our travel website example, if you want to correlate the most popular flight 

bookings with country and time of year for a marketing campaign, you would have to come up with 

unwieldy joins across several tables.

Typically, performance of analytic queries will a�ect the performance of the transactional database

—and that may create lags in response time with both the analytics query and transactional system.

Bottom Line: Using transactional databases for embedded analytics makes sense if you already have them 

in place, but you will eventually run into limitations and need workarounds.

View or Stored Procedures

Typically, when developers start noticing problems with their transactional systems, they may opt to 

create some views or stored procedures. Views create the appearance of a table as a result set of a stored 

query. The view could be generated from a combination of rows and columns across multiple tables. 

While views only showcase the data, stored procedures allow you to execute SQL statements on the data. 

The pros of using views and stored procedures include:

Simplifies the SQL needed to run analytics

Allows users to filter the information they want to see

With stored procedures, users can make modifications to the underlying tables (with views, you can 

filter and sort only).

Provides a good abstraction layer if schemas are similar in di�erent underlying tables/columns

Views or stored procedures may be the next logical step from transactional databases, but they 

typically make performance worse. The cons include:

Complex views with lots of tables create additional joins. 

Stored procedures may result in filtering and post processing after the data is retrieved, which may 

significantly reduce your response time. 

Bottom Line: When it comes to embedded analytics, views or stored procedures risk creating lags and 

a�ecting your application’s response time. 

The pros of replication include:

Many databases have built-in replication facilities, so this is easier to implement. You can leverage 

transaction logging to publish changes to replicated databases, then re-apply the transactions. 

Removes analytical load from the production database.

Allows for di�erent indexing strategy that may create better indexes for analytics to be introduced. 

Aggregate tables can now be created on the replicated database rather than the production database. 

Allows your team to use a familiar database technology.

The main issue with replication is the lag between a new transaction hitting the database and that data 

being available in the replicated table. Other downsides include: 

The table structures are typically the same and subject to complex queries, creating aggregate tables, etc. 

If database replication is di�cult with provided tools, a replication technology may need to be 

introduced, implemented, and maintained.

Real-time queries may still need to hit the production database (dependent upon “lag” or data latency 

expectations). 

Bottom Line: Replicating the production database also means replicating the complexity of queries in 

your embedded analytics solution. 

Caching

Sometimes, application development teams may turn to caching to help with query performance. With 

caching, you can preprocess complex and slow-running queries so the resulting data is easier to access when 

the user requests the information. The cached location could be in memory, another table in the database, or 

a file-based system where the resulting data is stored temporarily to make it easier to access frequently. 

The pros of caching include:

Caching can help with performance where queries are repeated.

Caching can also enable better performance with federated data (data in multiple-source systems), 

particularly when data needs to be joined or filtered based on other queries. 

It’s relatively easy to set up, in most environments. 

With caching, you query the database once and re-use the data many times.

Caching works well in a stable environment, where data in the database does not change frequently. 

You will need to identify data to be cached and develop processes to refresh the cache on a periodic 

basis. Some downsides include:

If the cache isn’t reused, it can add to performance overhead.  

There are data latency issues involved with using caches, and in some cases (like real-time queries), 

caching may not be the best option. 

Where there are multiple sources, ensuring consistency and scheduling of cache refreshes can 

be complex.

Bottom Line: Caching can be a quick fix for improving embedded analytics performance, but the com-

plexity of multiple sources and data latency issues may lead to limitations over time. 

Data Mart/Data Warehouse

For a more sophisticated data architecture, application development teams may turn to data warehouses 

or data marts. Data warehouses are central repositories of integrated data from one or more disparate 

sources. Data marts contain a subset of a data warehouse designed for a specific reason (e.g., isolating 

data related to a particular line of business within the company).  

Data warehouses and data marts allow you to organize your data in a way that simplifies query complexi-

ty. Star and snowflake schemas are the common schema models associated with data warehouses and 

are logically structured to make analytics faster and easier to access. 

Other benefits of using a data warehouse or data mart include: 

Query performance is significantly improved. Since all the required data is in the data warehouse, this 

removes the need for querying multiple sources. 

You reduce the load on the transactional database. You can build a data warehouse and data mart 

using your existing database technology.

The main downside is that designing a data structure for particular use cases can be complex at first. If 

you are not familiar with star or snowflake schema and the ETL tools involved, then you may need 

support through this stage. Other downsides include: 

ETL involves having the skill set to understand and use data transformation tools. 

A need to understand how to lower data latency in scheduling updates to a data warehouse.

Additional quality control steps are needed to ensure the data in the data warehouse is valid; the new 

queries are running correctly; and each step in the ETL/ELT process is validated.  

It takes time to build, test, and manage.

You may still need to occasionally query the transaction system for real-time requirements. 

Bottom Line: Data warehouses and data marts are designed for faster analytics and response times, but 

implementation will take more time and be more complex. 

Modern Analytics Database

Even with a data warehouse in place, application development teams find that switching to a modern 

analytics database may be the best option for analytics queries. 

Modern analytics databases are typically columnar structures or in-memory structures. In columnar 

structures, data is stored at a granular column level in the form of many files. This structure makes it faster 

to query since only the columns associated with the query need to be read, not the entire row.  This 

significantly increases performance. For in-memory structures, the data is loaded into the memory, which 

makes reading/writing dramatically faster than a disk-based structure. 

Pros of a modern analytics database include:

Improved performance on data load. ELT is faster, since data transformations occur on the analytics 

database platform. 

Optimal query performance since the database enables easier management of “flat tables” associated 

with star schemas. 

Databases that are designed for fast queries and optimized data storage, which is important for large 

volumes of data. 

There is a learning curve associated with switching to a modern analytics database. You will need to 

learn to operate and support a new database technology. You will also need to learn how to optimize 

the database performance with new concepts such as projections rather than indexes. Other 

downsides include:

Unlike transactional databases, analytics databases perform updates and deletions poorly. 

You may need to implement workarounds for this, such as partition design to improve where data 

needs updating, or new data transformation strategies to avoid update/deletion issues. 

You also need to determine the update frequency for data. 

Bottom Line: The modern analytics database is optimal for faster queries and dealing with large volumes 

of data, but it requires specialized skills and can be costly to implement. 

Some data architecture approaches will be better suited to your organization than others, and you may 

skip some approaches altogether. It all depends on your particular setup and needs. So how do you find 

the approach that’s best for you? 

Consider these common data scenarios and recommended architecture approaches: 

Where is your solution located? On premise or SaaS? 

If your solution is on your customer’s premises, then creating Views, Stored procedures and/or 

Aggregate tables will be the easiest first step to implement.  

If you are hosting the solution for your customers, and performance of your transactional database is 

critical, then Replication is a good first step. Replication will remove the analytics load from the 

transactional database. You may add Aggregate tables as a next step and eventually consider moving 

into a Data Warehouse/Data Mart. 

How large and complex is your environment? 

When customers use your solution, does it mean large data volumes where performance is critical? 

Then investing in Replication and/or a Data Warehouse will justify the additional hardware and 

costs of implementation, since they will quickly run into the limitations of working with Views and 

Stored Procedures. 

TOWARD A MODERN DATA ARCHITECTURE 
FOR EMBEDDED ANALYTICS

Part 4: Toward a modern data analytics architecture

Choosing the right approach to data architecture will depend on your organization’s particular needs. 

While it may seem overwhelming to modernize your data analytics architecture—especially if developing 

embedded analytics is not a core competency of your engineering and product teams—it can be done. 

Gartner’s 2019 Planning Guide for Data and Analytics advises application development teams to start 

small and build in stages, beginning with a business challenge that can be solved. You may also consider 

partnering with a third-party embedded analytics platform that is already built on modern data architec-

ture principles. This will allow you to scale your embedded analytics as your application continues to grow 

and evolve. 

Learn more about how embedded analytics fits in your tech stack. 
Read the ebook: Are Your Embedded Analytics DevOps-Friendly? 
 

About Logi Analytics

Delivering compelling applications with analytics at their core has never been more crucial—or more 

complex. Logi is the only developer-grade analytics platform focused exclusively on embedding 

analytics in commercial and enterprise applications. Logi leverages your existing tech stack and sup-

ports unlimited customization and white-labeling, so you can quickly build a completely unique 

analytics experience.

Over 1,900 applications have trusted the Logi platform to deliver sophisticated analytics capabilities 

and power their businesses. The company is headquartered in McLean, Virginia, with o�ces in Ireland 

and England. Learn more at LogiAnalytics.com.
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Table 1-1: Modern data architecture guidelines

Phase

Data Acquisition

Organization 

Analysis

Guidelines Description

Expand data sources Create a flow of incoming data that 

incorporates cloud and external streaming 

data (such as geolocation, weather, consumer 

data, etc.). The idea is to shift from just 

“storing” data and hoping someone will use it 

to thinking about the information that will 

help downstream processes and people. 

Use machine learning 

at source

Deploy machine learning algorithms to assess 

incoming data and decide whether, when, 

and how the data will be stored/used.

Logical data warehouse Instead of storing data in a monolithic 

warehouse, which can quickly go stale, 

organizations can deploy a logical data 

warehouse (LDW) to dynamically connect 

relevant data across heterogeneous platforms. 

Use virtualization tools 

for data layer

Gartner recommends the use of virtualization 

tools to create a data virtualization layer on 

top of the LDW. This establishes a shared data 

access layer, regardless of source, and 

logically relates the data. 

Support a range of 

analytics capabilities 

Incorporate a range of analytics capabilities 

(from descriptive to prescriptive and predictive 

analytics) within the workflow of the 

organization. Let the data guide interactions and 

analytics, and use algorithms to drive processes. 
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Is analytics a strategic goal in your organization? 

If you host your environment and realize analytics is a strategic goal, then it’s worth investing in a 

Data Warehouse/Data Mart. To design a Data Warehouse/Data Mart e�ectively, the first step is to 

make sure you understand the types of queries and use cases for your end user. This allows you to 

build and implement the environment correctly and optimize it for the types of queries and use cases 

it will handle. 

How large is your Data Warehouse/Data Mart? 

If your starting point is a Data Warehouse/Data Mart, moving to a Modern Analytics Database will depend on 
how large your current environment is and how critical performance is to your organization.

Also, if you are hosting your own Data Warehouse/Data Mart, you can save money in the long term with less 
hardware overall. 

Ultimately, your current technology and environment, skills, and performance needs will be critical drivers 

in your data architecture decision.

Now that we have examined how your analytics data architecture may evolve in practice, let’s take a look 

at what industry analysts recommend for an ideal modern data architecture.

Industry analysts have more to say about choosing a data architecture approach. In the Eckerson Group 

report, A Pragmatic Approach to Modern Data Architecture, David Wells explains the first step to modern-

izing your data architecture is to change your perspective on data. He writes, “Think of data not as some-

thing that is static and stored, but as something live, dynamic, and flowing through every business process.” 

What does this mean for the analytics architecture? It’s a shift away from traditional BI architecture—which 

is based on a linear data flow, structured data, rigid infrastructure, batch processing, and centralized 

services—and toward a modern approach based on multi-directional data flow, iterative workflow, both 

structured and unstructured data, elastic infrastructure, and decentralized/self-service services.

Gartner’s Planning Guide for Data and Analytics goes into more detail on conceiving an end-to-end 

analytics architecture that fuses data, insight, and action. In this architecture, there are four phases: data 

acquisition, organization, analysis, and delivery. The table on the next page summarizes the main guide-

lines related to each of these phases. 

Aggregate Tables or Material Views

Application development teams may opt to create aggregate tables or material views as another work-

around to using view or stored procedures. With an aggregate table, you can create a summary table of 

the data you need by running a “Group By” SQL query. For example, a marketing department can create 

an aggregate table that shows “Sales over a month.” Since most analytics queries typically involve aggre-

gation, using an aggregate table will prevent the need to aggregate the data for every query. In a material-

ized view, you can store query results in a table or database.  

The pros of using aggregate tables or material views include: 

Simplifies the SQL needed to run analytics 

Aggregating data improves query performance 

No need to aggregate data for every query

The downside of aggregate tables or material views is:

You need to figure out when and how to update the tables:

Triggers can help with synchronization of data, but typically add to load on transactional 

additions/updates and can be complex to implement. 

Update processes, which run on a periodic basis, may be another alternative—but you will need to 

implement logic that can distinguish between updates versus new transactions.

Another issue arises if you have new requirements where the necessary data is not in the aggregate 

tables or material views. You may have to go back to the transactional database to recreate your 

aggregate tables and start over.

Bottom Line: Pre-aggregated tables and materialized views will help with performance. However, you do 

need to stay organized and put strict processes in place to keep the aggregates up to date. 

Replication of Transactional Database

Replication is another common workaround that o�oads analytics queries from the production database 

to a replicated copy of the database. Replication requires copying and storing data in more than one site 

or node, so all of the analytics users share the same information. 

TOWARD A MODERN DATA ARCHITECTURE 
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Depending on your organization’s particular setup and needs, you could take a number of di�erent 

approaches to data architecture for embedded analytics. Here, we outline the seven most common 

approaches—from a transactional database to a modern analytics database (columnar or in memory). 

Note that these are not individual steps in your data architecture journey. You may skip some approaches 

altogether, or use two simultaneously. This is not a prescribed path. 

Read on to explore each step, the pros and cons, and the impact on analytic workloads, as well 

as our recommendations. 

Transactional Database 

The starting point for many application development teams is the ubiquitous transactional database, 

which runs most production systems. Although they aren’t specifically built for analytics, transactional 

databases typically become the default analytics environment because they are already in place, and are 

familiar and accessible. 

Transactional databases are row stores, with each record/row keeping relevant information together. 

For example, for a travel website, each record/row may store relevant customer information, flight number, 

date of booking, and so on, and may be uniquely identified by Customer_ID. The database may contain 

several tables tracking other information related to the transaction, such as flight schedule, ticket prices, 

and country list. Transactional databases are known for very fast read/write updates and high data integrity. 

The pros of transactional databases include:

Most application development teams are familiar with this database structure and understand how to 

write queries to get the correct data.

As soon as data hits the transactional database, it is available for analytics.

The main downside of transactional databases is structure: They’re not designed for optimal analytics 

queries. This creates the following issues: 

You have to resort to complex joins and operations to gain insight into the data stored in a 

transactional database. In our travel website example, if you want to correlate the most popular flight 

bookings with country and time of year for a marketing campaign, you would have to come up with 

unwieldy joins across several tables.

Typically, performance of analytic queries will a�ect the performance of the transactional database

—and that may create lags in response time with both the analytics query and transactional system.

Bottom Line: Using transactional databases for embedded analytics makes sense if you already have them 

in place, but you will eventually run into limitations and need workarounds.

View or Stored Procedures

Typically, when developers start noticing problems with their transactional systems, they may opt to 

create some views or stored procedures. Views create the appearance of a table as a result set of a stored 

query. The view could be generated from a combination of rows and columns across multiple tables. 

While views only showcase the data, stored procedures allow you to execute SQL statements on the data. 

The pros of using views and stored procedures include:

Simplifies the SQL needed to run analytics

Allows users to filter the information they want to see

With stored procedures, users can make modifications to the underlying tables (with views, you can 

filter and sort only).

Provides a good abstraction layer if schemas are similar in di�erent underlying tables/columns

Views or stored procedures may be the next logical step from transactional databases, but they 

typically make performance worse. The cons include:

Complex views with lots of tables create additional joins. 

Stored procedures may result in filtering and post processing after the data is retrieved, which may 

significantly reduce your response time. 

Bottom Line: When it comes to embedded analytics, views or stored procedures risk creating lags and 

a�ecting your application’s response time. 

The pros of replication include:

Many databases have built-in replication facilities, so this is easier to implement. You can leverage 

transaction logging to publish changes to replicated databases, then re-apply the transactions. 

Removes analytical load from the production database.

Allows for di�erent indexing strategy that may create better indexes for analytics to be introduced. 

Aggregate tables can now be created on the replicated database rather than the production database. 

Allows your team to use a familiar database technology.

The main issue with replication is the lag between a new transaction hitting the database and that data 

being available in the replicated table. Other downsides include: 

The table structures are typically the same and subject to complex queries, creating aggregate tables, etc. 

If database replication is di�cult with provided tools, a replication technology may need to be 

introduced, implemented, and maintained.

Real-time queries may still need to hit the production database (dependent upon “lag” or data latency 

expectations). 

Bottom Line: Replicating the production database also means replicating the complexity of queries in 

your embedded analytics solution. 

Caching

Sometimes, application development teams may turn to caching to help with query performance. With 

caching, you can preprocess complex and slow-running queries so the resulting data is easier to access when 

the user requests the information. The cached location could be in memory, another table in the database, or 

a file-based system where the resulting data is stored temporarily to make it easier to access frequently. 

The pros of caching include:

Caching can help with performance where queries are repeated.

Caching can also enable better performance with federated data (data in multiple-source systems), 

particularly when data needs to be joined or filtered based on other queries. 

It’s relatively easy to set up, in most environments. 

With caching, you query the database once and re-use the data many times.

Caching works well in a stable environment, where data in the database does not change frequently. 

You will need to identify data to be cached and develop processes to refresh the cache on a periodic 

basis. Some downsides include:

If the cache isn’t reused, it can add to performance overhead.  

There are data latency issues involved with using caches, and in some cases (like real-time queries), 

caching may not be the best option. 

Where there are multiple sources, ensuring consistency and scheduling of cache refreshes can 

be complex.

Bottom Line: Caching can be a quick fix for improving embedded analytics performance, but the com-

plexity of multiple sources and data latency issues may lead to limitations over time. 

Data Mart/Data Warehouse

For a more sophisticated data architecture, application development teams may turn to data warehouses 

or data marts. Data warehouses are central repositories of integrated data from one or more disparate 

sources. Data marts contain a subset of a data warehouse designed for a specific reason (e.g., isolating 

data related to a particular line of business within the company).  

Data warehouses and data marts allow you to organize your data in a way that simplifies query complexi-

ty. Star and snowflake schemas are the common schema models associated with data warehouses and 

are logically structured to make analytics faster and easier to access. 

Other benefits of using a data warehouse or data mart include: 

Query performance is significantly improved. Since all the required data is in the data warehouse, this 

removes the need for querying multiple sources. 

You reduce the load on the transactional database. You can build a data warehouse and data mart 

using your existing database technology.

The main downside is that designing a data structure for particular use cases can be complex at first. If 

you are not familiar with star or snowflake schema and the ETL tools involved, then you may need 

support through this stage. Other downsides include: 

ETL involves having the skill set to understand and use data transformation tools. 

A need to understand how to lower data latency in scheduling updates to a data warehouse.

Additional quality control steps are needed to ensure the data in the data warehouse is valid; the new 

queries are running correctly; and each step in the ETL/ELT process is validated.  

It takes time to build, test, and manage.

You may still need to occasionally query the transaction system for real-time requirements. 

Bottom Line: Data warehouses and data marts are designed for faster analytics and response times, but 

implementation will take more time and be more complex. 

Modern Analytics Database

Even with a data warehouse in place, application development teams find that switching to a modern 

analytics database may be the best option for analytics queries. 

Modern analytics databases are typically columnar structures or in-memory structures. In columnar 

structures, data is stored at a granular column level in the form of many files. This structure makes it faster 

to query since only the columns associated with the query need to be read, not the entire row.  This 

significantly increases performance. For in-memory structures, the data is loaded into the memory, which 

makes reading/writing dramatically faster than a disk-based structure. 

Pros of a modern analytics database include:

Improved performance on data load. ELT is faster, since data transformations occur on the analytics 

database platform. 

Optimal query performance since the database enables easier management of “flat tables” associated 

with star schemas. 

Databases that are designed for fast queries and optimized data storage, which is important for large 

volumes of data. 

There is a learning curve associated with switching to a modern analytics database. You will need to 

learn to operate and support a new database technology. You will also need to learn how to optimize 

the database performance with new concepts such as projections rather than indexes. Other 

downsides include:

Unlike transactional databases, analytics databases perform updates and deletions poorly. 

You may need to implement workarounds for this, such as partition design to improve where data 

needs updating, or new data transformation strategies to avoid update/deletion issues. 

You also need to determine the update frequency for data. 

Bottom Line: The modern analytics database is optimal for faster queries and dealing with large volumes 

of data, but it requires specialized skills and can be costly to implement. 

Some data architecture approaches will be better suited to your organization than others, and you may 

skip some approaches altogether. It all depends on your particular setup and needs. So how do you find 

the approach that’s best for you? 

Consider these common data scenarios and recommended architecture approaches: 

Where is your solution located? On premise or SaaS? 

If your solution is on your customer’s premises, then creating Views, Stored procedures and/or 

Aggregate tables will be the easiest first step to implement.  

If you are hosting the solution for your customers, and performance of your transactional database is 

critical, then Replication is a good first step. Replication will remove the analytics load from the 

transactional database. You may add Aggregate tables as a next step and eventually consider moving 

into a Data Warehouse/Data Mart. 

How large and complex is your environment? 

When customers use your solution, does it mean large data volumes where performance is critical? 

Then investing in Replication and/or a Data Warehouse will justify the additional hardware and 

costs of implementation, since they will quickly run into the limitations of working with Views and 

Stored Procedures. 

Choosing the right approach to data architecture will depend on your organization’s particular needs. 

While it may seem overwhelming to modernize your data analytics architecture—especially if developing 

embedded analytics is not a core competency of your engineering and product teams—it can be done. 

Gartner’s 2019 Planning Guide for Data and Analytics advises application development teams to start 

small and build in stages, beginning with a business challenge that can be solved. You may also consider 

partnering with a third-party embedded analytics platform that is already built on modern data architec-

ture principles. This will allow you to scale your embedded analytics as your application continues to grow 

and evolve. 

Learn more about how embedded analytics fits in your tech stack. 
Read the ebook: Are Your Embedded Analytics DevOps-Friendly? 
 

About Logi Analytics

Delivering compelling applications with analytics at their core has never been more crucial—or more 

complex. Logi is the only developer-grade analytics platform focused exclusively on embedding 

analytics in commercial and enterprise applications. Logi leverages your existing tech stack and sup-

ports unlimited customization and white-labeling, so you can quickly build a completely unique 

analytics experience.

Over 1,900 applications have trusted the Logi platform to deliver sophisticated analytics capabilities 

and power their businesses. The company is headquartered in McLean, Virginia, with o�ces in Ireland 

and England. Learn more at LogiAnalytics.com.
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